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Abstract 
 
A theoretical model for growth or inflation should be able to reproduce the empirical 
features of these variables better than competing alternatives. Therefore, it is common 
practice in the literature, whenever a new model is suggested, to compare its performance 
with that of a benchmark model. However, while the theoretical models become more 
and more sophisticated, the benchmark typically remains a simple linear time series 
model. Recent examples are provided, e.g., by articles in the real business cycle literature 
or by new-keynesian studies on inflation persistence. While a time series model can 
provide a reasonable benchmark to evaluate the value added of economic theory relative 
to the pure explanatory power of the past behavior of the variable, recent developments in 
time series analysis suggest that more sophisticated time series models could provide 
more serious benchmarks for economic models. In this paper we evaluate whether these 
complicated time series models can really outperform standard linear models for GDP 
growth and inflation, and should therefore substitute them as benchmarks for economic 
theory based models. Since a complicated model specification can over-fit in sample, i.e. 
the model can spuriously perform very well compared to simpler alternatives, we conduct 
the model comparison based on the out of sample forecasting performance. We consider 
a large variety of models and evaluation criteria, using real time data and a sophisticated 
bootstrap algorithm to evaluate the statistical significance of our results. Our main 
conclusion is that in general linear time series models can be hardly beaten if they are 
carefully specified, and therefore still provide a good benchmark for theoretical models 
of growth and inflation. This finding is particularly evident when using real time data, 
which leads to a substantial deterioration in the forecasting performance of the 
sophisticated models compared to the standard case where only the latest vintage of data 
is used. However, we also identify some important cases where the adoption of a more 
complicated benchmark can alter the conclusions of economic analyses about the driving 
forces of GDP growth and inflation. Therefore, comparing theoretical models also with 
more sophisticated time series benchmarks can guarantee more robust conclusions. 
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1. Introduction 
A theoretical model for growth or inflation should be able to reproduce the empirical 

features of these variables better than competing alternatives. Therefore, it is common 

practice in the literature, whenever a new model is suggested, to compare its performance 

with that of a benchmark model. However, while the theoretical models become more 

and more sophisticated, the benchmark typically remains a simple linear time series 

model. Recent examples are provided in the literature on DSGE models, which 

incorporate most of the recent theoretical advancements in macroeconomic theory, but 

are usually compared with a linear VAR for a subset of the variables under analysis, see, 

e.g., Del Negro, Schorfheide, Smets, and Wouters (2004). 

While a time series model can provide a reasonable benchmark to evaluate the 

value added of economic theory relative to the pure explanatory power of the past 

behavior of the variable, the many social, economic and political changes that occurred in 

the US after World War II can be expected to make modeling macroeconomic variables 

with constant parameter linear models particularly difficult. In this context, time-varying 

and non-linear models could have a comparative advantage over linear specifications, and 

there is an ever growing literature on this topic. On the other hand, there is no consensus 

on the magnitude and relevance of the structural breaks, and therefore on the need of 

going beyond linear models for the conditional expectation of growth or inflation, see, 

e.g., the debate between Cogley and Sargent (2001) and Sims (2001). 

In this paper we conduct a detailed analysis of univariate time series models for US 

GDP growth and inflation. Our main goal is to establish whether simple autoregressive 

(AR) models can still be used as a sound benchmark for economic theory based models, 

or whether they should be substituted for more sophisticated specifications. We focus on 

univariate benchmark models because the theory based model should be at least capable 

of improving upon models that only rely on the past behavior of the variable of interest. 

Of course more sophisticated multivariate time series models or even structural models 

could be used as tougher competitors, but this would entail a substantial increase of 

complexity which few macroeconomists would be willing to undertake for evaluating 

their economic based models. Moreover, univariate linear models are often more robust 

than their multivariate (VAR) counterparts, see e.g. Banerjee and Marcellino (2005). 
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Therefore, beating a serious univariate time series model for growth and inflation can be 

considered as a good testing ground for an economic theory based model. 

We consider a large variety of models, including: AR models with different 

deterministic components, stationarity assumptions, and lag length specification. Time-

varying AR models whose parameter evolution can capture the small but frequent 

changes in model structure that emerge, for example, from the analysis of Stock and 

Watson (1996). Smooth transition AR models, which allow for more general patterns of 

parameter variation, ranging from a smooth evolution across regimes to close to abrupt 

changes, as in Markov switching models à la Hamilton (1989) or SETAR models, and 

therefore can accommodate larger structural changes. Artificial neural networks, which 

are hardly interpretable from an economic point of view but provide a powerful tool to 

approximate virtually any kind of non-linear behavior, see, e.g., Hornik, Stinchcombe 

and White (1989). Overall, we consider a total of 55 alternative specifications, described 

in details in Section 2, providing a close to exhaustive analysis of the role of nonlinearity 

in modeling GDP growth and inflation using univariate models. While macroeconomists 

might consider some of these models too complex, we can anticipate that we find a very 

limited role for nonlinearity both GDP growth and inflation, while a careful specification 

of the linear models is very important. 

The model comparison exercise can be conducted in-sample or out-of-sample. 

Within an in-sample framework, the models can be evaluated on the basis of their 

goodness of fit or of their capacity of replicating some features of the data, such as 

persistence or unconditional moments. As an alternative, more formal statistical 

procedures can be applied, such as tests for model selection, information criteria or 

encompassing evaluation, see e.g. Pesaran and Deaton (1976), Mizon and Richard 

(1986), Vuong (1989) or Marcellino and Mizon (2006) for an overview. 

A comparison of the in sample goodness of fit of linear and non-linear models 

would be likely biased in favor of the latter because of their extensive parameterization, 

see, e.g., Van Dick and Franses (2003), and this could also affect the other evaluation 

criteria. Moreover, the in-sample data have been already used for estimation or 

calibration of the models under analysis, so that fresh data are better suited for an 

unbiased evaluation. These comments suggest that the relative performance of linear and 
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non-linear models for GDP growth and inflation is better evaluated out-of-sample, on the 

basis of their forecasting ability. 

The forecasting ability of the models can be assessed using alternative criteria, such 

as forecast encompassing tests, where the issue is whether the forecasts from one model 

can explain the forecast errors from another model, see e.g. Chong and Hendry (1986); 

pooling regressions, where the best model should have a weight of one in the pooled 

forecast and the competing model a weight of zero, see e.g. Diebold (1989); or the 

relative size of the loss function associated with the forecast errors generated by the 

models, see e.g. West (1996). We prefer the last approach, and compare the forecasts 

from the competing models on the basis of several loss functions, including the common 

mean absolute and mean square forecast error (mae and mse, respectively). Notice that if 

a model does not dominate the others on the basis of the mse, it also does not forecast 

encompass them and it does not have a weight of one in a pooling regression, see e.g. 

Marcellino (2000). 

Out-of-sample evaluation is not immune to criticisms. In particular, it is typically 

less informative than in-sample comparisons since the latter are often based on the full 

parameter set. Moreover, a valid economic-theory based model can produce worse 

forecasts than a time-series model, see e.g. Clements and Hendry (1998) for a theoretical 

discussion or Favero and Marcellino (2005) for an empirical example and simulation 

evidence. However, if the goal of the analysis is forecasting gdp growth or inflation, the 

out-of-sample forecasting performance appears as the natural metric for ranking the 

competing models. 

Our forecast evaluation covers a rather long time span, 1980-2004, in order to 

include a few business cycles and periods with a rather different behavior of inflation. 

We also consider separately the ‘80s and ‘90s, and either the periods of expansions and 

recessions for GDP growth or those of reserve and inflation targeting for inflation. 

As a first step, we follow standard practice and conduct a pseudo real time 

forecasting exercise, where model specification, estimation and forecasting are repeated 

for each month or quarter in the evaluation period, using the latest available vintage of 

data. Detailed results are presented in Section 3 for GDP growth and Section 4 for CPI 

inflation.  
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Overall, as anticipated, we find that the quantitative gains from using the time-

varying or non-linear models rather than linear specifications are either limited or totally 

non-existent. The loss reduction using the best non-linear specification is in the range 5-

15% for inflation and even lower for GDP growth, if the linear models are carefully 

specified, e.g., by pre-testing for the presence of a unit root, carefully choosing the 

deterministic component, or using information criteria for lag length selection. It is worth 

recalling that we focus here on point forecasts, while it could be that the nonlinear models 

perform better for density or interval forecasts, see, e.g., Pesaran and Potter (1997) in the 

case of GDP growth. 

Even though the forecasting gains from the more sophisticated time series models 

are quantitatively limited, they could be significant from a statistical and/or economic 

point of view. To evaluate whether the differences of each model with respect to the 

benchmark are statistically significant, we then bootstrap 200 series of GDP growth and 

inflation, compute the empirical distribution function of the mse for each model, and use 

the latter to obtain a 90% confidence interval for the mse of each model relative to the 

linear benchmark. The exercise is complicated by the fact that we do not want to 

bootstrap the series assuming that the benchmark linear model generates the data, since 

the results we obtained indicate that the generating mechanism can be non-linear, in 

particular for inflation. Therefore, we use a sophisticated non-parametric bootstrap 

algorithm, see Politis and White (2004). The results, summarized in Section 5, indicate 

that the confidence interval for the relative mse are rather large but, in particular for 

inflation, there are some non-linear models whose associated relative mse falls outside 

the confidence interval, signaling a statistically significant improvement with respect to 

the linear benchmark. 

To evaluate the economic significance of the forecasting gains from the more 

sophisticated time series models or improved specification methods for the linear models, 

we consider whether their size can be sufficient to question the conclusions of important 

studies on the determinants of inflation and growth. For example, the exhaustive and 

influential analysis of inflation models in Stock and Watson (1999a), led them to 

conclude that (from the abstract) “Inflation forecasts produced by the Phillips curve 

generally have been more accurate than forecasts based on other macroeconomic 
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variables, including interest rates, money and commodity prices. These forecasts can 

however be improved upon using a generalized Phillips curve based on measures of real 

aggregate activity other than unemployment, especially a new index of aggregate activity 

based on 61 real economic indicator”. However, if their benchmark linear Phillips curve 

for CPI inflation is substituted by an AR with time varying parameters, it turns out that 

the latter can be hardly beaten by any of the multivariate specifications considered by 

Stock and Watson (1999a). In other words, a careful modeling of parameter evolution, 

which seems to be required in this case since Stock and Watson (1999a) detected some 

instability in their estimated Phillips curves, matches the forecasting gains obtained from 

modeling a very large set of macroeconomic explanatory variables. A similar result 

emerges for the factor based inflation forecasts in Stock and Watson (2002). Of course, it 

may be possible to do even better by using non-linear multivariate models, but that would 

introduce additional substantial complications, in particular in a large data set context. 

As another example, Stock and Watson (2003) conduct a careful examination of the 

role of financial variables and other macroeconomic time series for forecasting GDP 

growth during the periods 1971-84 and 1985-99. In both cases we find that there are no 

major advantages by adopting a nonlinear specification, but adding a linear trend into 

their benchmark AR model for 1985-99 makes it good enough to outperform even pooled 

forecasts using macroeconomic or financial indicators. Using a better benchmark is also 

very important, e.g., for the analysis in Ang, Piazzesi and Wei (2004) on the role of the 

yield curve for forecasting GDP growth. They conclude that the former is very important 

over the period 1990-2001, using an AR(1) as a benchmark in their forecasting exercise. 

However, a model with a linear trend and four lags would provide a much more serious 

competitor, its mse relative to the AR(1) for a three year ahead forecast is about 0.54, 

much lower than any of the models considered by Ang et al. (2004). Of course the linear 

trend in the model for GDP growth might just be approximating the behavior of the 

economic variables that Stock and Watson or Ang et al, consider: the point is that it 

seems to work better than these variables. It might be possible to do even better by 

combining the trend and the economic variables or by considering additional economic 

variables, but this is exactly the reason for comparing the economic theory based model 

with a tough benchmark and not with a simple one.  
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Another interesting by-product of the analysis of GDP growth over subperiods is 

that there is a marked decrease in the mean square error over the more recent subsample 

that, combined with the good performance of the linear specifications in both subsamples 

and the stable performance of the nonlinear models, suggests that the size of the shocks 

matters more than time-variation in the parameters in order to explain the reduction in the 

volatility of GDP growth observed in the more recent period.  

This finding is in line with results in, e.g., Blanchard and Simon (2001), Kim and 

Nelson (1999), McConnel and Perez-Quiros (2000) and Sims and Zha (2004). Instead, it 

is in contrast with, e.g., DeJong, Liesenfeld and Richard (2003a), who find that a 

sophisticated model with time-varying parameters produces residuals with stable 

variability. However, the forecasting performance of this model, evaluated in DeJong, 

Liesenfeld and Richard (2003b), is unclear because of the choice of a simple benchmark, 

a random walk model, which performs poorly in our comparison except during 

recessions. 

As a final robustness analysis on the relative performance of the more sophisticated 

time series models for inflation and GDP growth, we use real time datasets rather than the 

latest available set of values for GDP and CPI. In other words, in each period over the 

evaluation sample we use the set of data that were available in that period. Croushore and 

Stark (2001, 2003) and Stark and Croushore (2002) have shown, among others, how 

using the available information set rather than the final vintage of data can dramatically 

change the results of a forecasting exercise or of an empirical analysis, see Croushore 

(2004) for an overview.  

The evaluation of the forecasting performance of our large set of non-linear models 

using real time data is of particular interest since, to the best of our knowledge, this is the 

first time that such a comparison is conducted using real time data. A priori we might 

expect that the non-linear models are better suited to handle the revision process and 

measurement errors in real time data due to their flexibility. On the other hand, if their 

specification is tailored for a particular vintage of data, the forecasts could be out of track 

in the presence of major data revisions. 

The results reported in Section 6 indicate that the use of real time data induces a 

deterioration in the forecasting performance of the non-linear models, making the linear 
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specifications systematically the best. This finding is also related to the improved relative 

forecasting performance of the linear models when the sample starts in the early ‘80s. 

Moreover, also in this context and in particular for GDP growth, there are substantial 

gains from a careful specification of the linear models. 

In summary, while real time data are more of interest for practical forecasting 

purposes than for model validation, their use does not seem to provide any additional 

advantage for the non-linear models versus simple but carefully specified linear models 

for growth and inflation. 

 

 

2 Forecasting methods 
A large variety of nonlinear models are now available for modelling and forecasting 

macroeconomic time series, see, e.g., Terasvirta (2005) and White (2005) for recent 

overviews. Since we want to propose a benchmark model, it should be relatively easy to 

estimate and evaluate, and its performance should have already been considered in 

previous analyses. 

We consider several alternative models, along the lines of Marcellino (2004) who 

further extends the set of specifications analyzed in Stock and Watson (1999b). These 

two papers evaluate the relative forecasting performance of linear and nonlinear models 

for a large number of macroeconomic variables for, respectively, the euro area and the 

US. They find that on average linear models perform best, but for some time series 

nonlinear specifications can yield substantial gains. We are here interested in evaluating 

the extent of the gains for US GDP growth and inflation, with a more detailed and 

comprehensive analysis.  

The formulation of a generic forecasting model is  

,);( hthtt
h

ht Zfy ++ += εθ           (1) 

where ty  is the log of either real GDP or the CPI index, h indicates the forecast horizon, 

tZ  is a vector of predictor variables, tε  is an error term, and hθ  is a vector of parameters, 

possibly evolving over time. Forecasting methods differ for the choice of the functional 

form of the relationship between h
hty +  and tZ , f . Within each method, different models 
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are determined by the choice of the regressors tZ  and the stationarity transformation 

applied to ty . 

The h-step forecast is  

),ˆ;(ˆ htt
h

ht Zfy θ=+         (2) 

with associated forecast error 

.ˆ h
ht

h
htht yye +++ −=         (3) 

 

When ty  is treated as (possibly trend) stationary, it is ht
h

ht yy ++ = , while if ty  is I(1) then 

tht
h

ht yyy −= ++ . We present results for both cases, and for the case where ty  is inflation 

rather than the (log of the) CPI index. Moreover, we also consider a pre-test forecast 

where the decision on the stationarity of ty  is based on a unit root test, which can 

improve the forecasting performance, see, e.g., Diebold and Kilian (2000). In particular, 

we use the Elliott, Rothenberg and Stock (1996) DF-GLS statistics, which performed best 

in the simulation experiments in Stock (1996).  

Notice that hththt yye +++ −= ˆ  independently of whether ty  is treated as stationary or 

not, so that forecast errors from the three different cases (stationary, I(1) and pre-test) are 

directly comparable. Also, since )ˆ()( thtththt yyyye −−−= +++  and in our case ty  is 

expressed in logarithms, the forecast errors can be interpreted as errors in forecasting the 

h-period growth rate of the variable, e.g., quarter on quarter GDP growth or month on 

month CPI inflation when h=1. 

We focus on 1-step ahead forecasts, but also consider horizons of 2 and 4 quarters 

for GDP growth and 3, 6 and 12 months for inflation. When the forecast horizon h is 

larger than one, the "h-step ahead projection" approach in (1), also called dynamic 

estimation (e.g., Clements and Hendry (1996)), differs from the standard approach of 

estimating a one-step ahead model, then iterating that model forward to obtain h-step 

ahead predictions.  The h-step ahead projection approach has two main advantages in this 

context.  First, the potential impact of specification error in the one-step ahead model can 

be reduced by using the same horizon for estimation as for forecasting. Second, we need 

not resort to simulation methods to obtain forecasts from non-linear models. The 
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resulting forecasts could be slightly less efficient, see, e.g., Granger and Terasvirta (1993, 

Ch.8), Marcellino, Stock and Watson (2005), but the computational savings in our real 

time exercise are substantial.1 

It is also worth noting that a few forecast errors from the more sophisticated non-

linear and time-varying methods can be large, due to occasional problems in the 

estimation of these models. In order not to bias the comparison against these methods, we 

automatically trim the forecasts. In particular, when the absolute value of a forecasted 

change is larger than any previously observed change, a no change forecast is used.2 

 

In the next three subsections we list the methods and models we compare, and 

briefly discuss their main characteristics and estimation issues. More details can be found 

in Stock and Watson (1999b), Marcellino (2004). 

 

2.1 Linear methods 

Autoregression (AR). Box and Jenkins (1970) popularized the use of these models for 

forecasting economic variables, and they have performed rather well in forecast 

comparison exercises, see, e.g., Meese and Geweke (1984), or Marcellino, Stock and 

Watson (2003) for the Euro area. From an economic point of view, the hypothesis is that 

persistence is the main explanation for the behaviour of the variables. 

The f  function in (1) is linear, and tZ  includes lags of the y variable and a 

deterministic component. The latter can be either a constant or also a linear trend. The lag 

length is either fixed at 4, or it is chosen by AIC or BIC with a maximum of 6 lags. 

Recalling that the ty  variable can be treated as stationary, I(1), or pre-tested for unit 

roots, overall we have 18 models in this class. 

 

                                                 
1 For example, we have about 300 periods for evaluation of inflation forecasts in the base case and for each 
period we run 200 bootstrap replications to compute standard errors around the relative loss. Therefore, if 
were using 1000 Monte Carlo replications to compute a simulation based forecast, overall we should 
compute about 60 millions forecasts for each of the (about 40) nonlinear models. 
2 The results are fairly robust to modifications in this trimming procedure, such as comparing the absolute 
value of a forecasted change with a multiple of previously observed changes, or using the average value of 
the variable rather than a no change forecast. 
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No change.  This simple forecast is based on a random walk model, so that it is .ˆ tht yy =+  

Notwithstanding its simplicity, in a few cases the no change forecast was found to 

outperform even forecasts from large-scale structural models, see, e.g., Artis and 

Marcellino (2001). In our context, it can be better suited for inflation than for GDP 

growth, due to the higher persistence of the former. 

 

2.2 Time-varying methods 

Time-varying autoregression (ARTV).  In this case the parameters of the AR models 

evolve according to the following multivariate random walk model (see, e.g., Nyblom 

(1989)): 

,1 hththt u+= −θθ      ),,0(~ 22 Qiiduht σλ      (4) 

where 2σ  is the variance of the error termε  in (1) and 1' ))(( −= tt ZZEQ . From an 

economic perspective, this model allows for continuous but rather small changes in the 

dynamics of GDP growth and inflation, and could capture the minor instability common 

to several US macroeconomic time series, see, e.g., Stock and Watson (1996). 

We inspect several values of λ : 0 (no evolution), 0.0025, 0.005, 0.0075, 0.01, 

0.015, or 0.020. We consider first a specification with a constant, 3 lags and λ = 0.005, 

and then we allow for selection of the number of lags (1,3,6) jointly with the value of λ  

by either AIC or BIC. In each case, ty  can be either stationary, or I(1) or pre-tested, so 

that we have a total of 9 ARTV models. The models are estimated by the Kalman filter.  

 

Logistic smooth transition autoregression (LSTAR).  The generic model can be written as 

,''
htttt

h
ht dy ++ ++= εζβζα        (5) 

where td  is the logistic function )).exp(1/(1 10 ttd ζγγ ++=  Typically, this specification 

captures larger changes in the parameters of the model, allowing for a smooth transition 

from the old to the new parameter values. For example, it could capture the major 

increase and decrease of inflation in the ‘70s and ‘80s better than the AR or ARTV 

models. The smoothing parameter 1γ  regulates the shape of parameter change over time. 

When 01 =γ  the model becomes linear, while for large values of 1γ  the model tends to a 



 11

self-exciting threshold model with abrupt changes in the parameters (see, e.g., Granger 

and Terasvirta (1993), Terasvirta (1998) for details), so that it can also approximate the 

behavior of Markov-switching models à la Hamilton (1989). 

For models specified in levels we consider the following choices for the threshold 

variable in td : tt y=ζ , 2−= tt yζ , 5−= tt yζ , 6−−= ttt yyζ , 12−−= ttt yyζ . For 

differenced variables, it can be tt y∆=ζ , 2−∆= tt yζ , 5−∆= tt yζ , 6−−= ttt yyζ , 

12−−= ttt yyζ . In each case the lag length of the model is either 1 or 3 or 6. We report 

results for the following models: 3 lags and tt y=ζ  (or tt y∆=ζ  for the I(1) case); 3 lags 

and 6−−= ttt yyζ ; AIC or BIC selection of both the number of lags and the specification 

of tζ . In each case , ty  can be either stationary, or I(1) or pre-tested, so that overall there 

are 12 LSTAR models. Estimation is carried out by (recursive) non-linear least squares, 

using an optimizer developed by Stock and Watson (1999b). 

 

2.3 Non-linear methods 

Artificial neural network (ANN).  Artificial neural networks can provide a valid 

approximation to the generating mechanism of a vast class of non-linear processes, see, 

e.g., Hornik, Stinchcombe and White (1989), Swanson and White (1997), White (2005) 

for their use as forecasting devices. They can be even more flexible than the time varying 

models for capturing the effects of parameter changes, outlying observations, asymmetry 

in the reaction to shocks or other forms of non-linearity induced by institutional changes 

or large shocks. 

The so called single layer feedforward neural network model with n1 hidden units 

(and a linear component) is specified as: 

,)(
1

1

'
11

'
0 ht

n

i
tiit

h
ht gy +

=
+ ++= ∑ εζβγζβ       (6) 

where )(xg  is the logistic function, )1/(1)( xexg += . Note that when n1=1 the model can 

be interpreted as a logistic smooth transition autoregression, with the parameter evolution 

being determined by the linear combination of variables tζβ '
11 . A more complex model 

is the double layer feedforward neural network with n1 and n2 hidden units: 
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We report results for the following specifications: n1=2, n2=0,p=3 (recall that p is 

number of lags in tζ ); n1=2, n2=1,p=3; n1=2, n2=2, p=3; AIC or BIC selection with 

n1=(1,2,3), n2=(1,2 with n1=2),p=(1,3). For each case ty  can be either stationary, or I(1) 

or pre-tested, which yields a total of 15 ANN models. The models are estimated by 

(recursive) non-linear least squares, using an algorithm developed by Stock and Watson 

(1999b). 

 

Overall, there are 55 models in the forecast comparison exercise, 19 belong to the 

linear class, 21 are time-varying, and 15 are non-linear. They are summarized in Table 1. 

We also experimented with different specifications for these models, e.g., different lag 

lengths or different sets of transition variables in the fixed specifications for the quarterly 

models, but the following results are quite robust to these modifications. Therefore, for 

the sake of simplicity, we prefer to stick to the same set of model specifications for both 

inflation and GDP growth. 

 

 

 

3. US GDP growth 
The sample for quarterly real GDP covers the period 1959:1-2004:2, and it includes 

seven business cycles, based on the NBER recession dating. From Figure 1, which graphs 

the quarter on quarter GDP growth rates, the decline in volatility after the mid ‘80s is 

evident, while that in average growth is not so clear cut. However, descriptive statistics 

indicate that there was a drop of about 20% in the average growth rate, from about 0.0093 

over 1959-1979 to 0.0075 over 1980-2004. 

The main forecasting period we consider is 1980:1-2004:2, which starts with the 

twin recessions of 1980 and 1981. To mimic real time situations, in each quarter of the 

forecasting period we repeat the unit-root test, estimation and specification selection for 
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each forecasting model. Using 1959-1979 as the first estimation sample is sufficient to 

guarantee a rather accurate estimation of the parameters of the nonlinear models. 

The results of the forecast comparison exercise for different forecast horizons, loss 

functions, sample periods, and estimation methods are summarized in Table 2. We now 

discuss them in detail, focusing on linear models in the first subsection and on time-

varying and non-linear models in the second subsection. 

 

3.1 Linear models 

The figures in column 2 of Table 2a show that, when the models are compared on the 

basis of their 1-quarter ahead mean square forecast error relative to that of an AR model 

in levels with constant and four lags (ARFC04), our benchmark in this paper, there are 

some gains by adding a linear trend to the regressors set, while there are only minor 

differences in the results for different assumptions on the stationarity of GDP growth 

(I(0), I(1) or pre-test), and number of lags in the AR models (fixed, AIC, BIC, though 

AIC seems to work better than BIC). The best AR model (i.e., the simplest one with 

lowest relative mse) is ARFT04, a model with constant, trend and four lags, whose 

relative mse is 0.91. 

Changing the loss function from the mse to the mean absolute error (mae) or mean 

absolute cubed error (mace) does not alter substantially the ranking of the linear models, 

compare columns 2, 3, 4 of Table 2a. However, it is interesting to point out that the loss 

differentials across models increase when a larger weight is assigned to larger errors, i.e., 

when moving from the mae to the mace loss function. For example, the ARFT04 yields a 

relative loss of only 0.97 using the mae, while the value becomes 0.89 with the mace. 

This finding indicates that the ARFT04 performs better than the benchmark in particular 

when the forecast errors are rather large, which can be important when the forecasts are 

used in a policy making context. 

Increasing the forecast horizon from one to two or four quarters ahead also has 

limited consequences on the relative ranking of linear models, and the ARFT04 remains 

the best. However, the gains with respect to the benchmark are larger, the relative mse 

decreases to 0.82 when h=2 and to 0.73 when h=4, compare columns 2, 5, 6 of Table 2a. 

The absolute mse increases with the forecast horizon, compare columns 2, 5, 6 of Table 
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2c, even if, from a theoretical point of view, this is not always necessarily the case when 

the parameters are estimated. 

Repeating the forecast evaluation exercise over subsamples produces some 

interesting results. We consider two cases: a pure temporal division of the sample, 80-89 

and 90-04, and a division based on the NBER recession / expansion classification. During 

the period 80-89 including a (deterministic or stochastic) trend in the linear models 

improves the performance in most cases. There is a larger number of models that beat the 

benchmark, the relative mse decreases to 0.82 for the ARFT04 model, but a slightly 

lower value (0.80) is obtained for ARFC14, which imposes a unit root rather than a linear 

trend on the GDP level. The results for the subsample 90-04 are instead similar to the full 

sample 80-04, ARFT04 is again the best linear model with a relative mse of 0.92, 

compare columns 2, 7, 8 of Table 2a. From the same columns of Table 2c, in the second 

evaluation sample there is also an increase of about 30% in the loss of the benchmark 

model, even larger for the best model. The better performance of trending models in the 

‘80s is attributable to the pattern of declining growth from the peak in ’82-’83 to the 

recession of the early ‘90s, see Figure 1, while the worse performance in forecasting 

growth over 1990-2004 is mostly due to the recessionary episodes in this period. 

The figures in columns 9 and 10 of Table 2a and 2c indicate that there are even 

more marked differences in the forecasting performance of linear models during periods 

of expansion and recession. In expansions, the ranking of models and the values of the 

relative mse are similar to the full sample, not surprisingly since most of the period 1980-

2004 is expansionary, and ARFT04 and ARFC14 are basically equivalent. In recessions, 

there is a marked deterioration for all models, the loss from the benchmark doubles with 

respect to the expansionary periods, and the best forecasting model becomes the random 

walk, with a relative mse of 0.38.  

The different behavior of GDP growth over the business cycle relates to the old 

debate on the characterization of cycles as extrinsic phenomena, i.e. generated by the 

arrival of external shocks propagated through a linear model, versus intrinsic phenomena, 

i.e., generated by the nonlinear development of the endogenous variables. If the latter 

view is correct, as originally supported by Burns and Mitchell (1946) who treated 

expansions and recessions as two different periods, then the time-varying and nonlinear 
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models should yield forecasting gains with respect to the linear models over the whole 

forecasting period 1980-04, and present a more stable performance over the two 

subsamples. We will evaluate whether this is the case in the following subsection.  

As an alternative to the use of nonlinear models, rolling estimation is sometimes 

advocated as a means of robustifying the forecasts in the presence of structural changes in 

the estimation period (see, e.g., Pesaran and Timmerman (1995)). Therefore, in columns 

11 and 12 of Table 2a we report the relative mse for the whole period 80-04 resulting 

from estimation using a rolling window of either 10 or 15 years (recursively updated). In 

practice, for a 10-year window, the estimation sample is 1970:1-1979:4 when forecasting 

1980:1; it becomes 1970:2-1980:1 when forecasting 1980:2, then 1970:3-1980:2 when 

forecasting 1980:3, etc.  

While the performance of the benchmark is virtually unaffected by the different 

method of estimation, compare columns 2, 11, 12 of Table 2c, the use of a shorter 

estimation sample makes the presence of a linear trend in the model redundant. The best 

model is ARFC14, but its relative mse is close to one, around 0.94, which makes 

ARFT04 combined with recursive estimation the best linear forecasting tool, when 

evaluated over the full period 1980-2004. 

In summary, there are limited benefits from a more complex specification of a 

linear model than the benchmark AR(4) in levels with a constant, when the evaluation 

covers the whole period 1980-2004 and the forecast horizon is one quarter. Recursive 

estimation of the ARFT04 model yields the lowest mse among the class of linear models, 

but the gains with respect to the benchmark are lower than 10%. Moreover, the common 

model where GDP growth is regressed on a constant and four lags is a close second best. 

Instead, there emerge larger gains for longer forecast horizons, 2 or 4 quarters, and 

interesting differences over periods of expansion and recession, with the no change 

forecast performing particularly well in the latter. 

 

3.2 Time varying and non-linear models 

A first characteristic that emerges for the time-varying and non-linear models is that 

in general a fixed specification yields a comparable or lower relative mse than AIC or 

BIC based specifications, see column 2 of Table 2b. A parsimonious and fixed 
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specification reduces the extent of over-fitting and seems to be preferable also with our 

rather long estimation sample. There are instead no clear cut results on the usefulness of a 

careful choice of the stationarity characteristic of GDP. 

The best model is LS1103, an LSTAR model for GDP growth, three lags in the 

autoregressive component, and transition variable tt y=ζ , which yields a relative mse of 

0.95, larger than the best linear model (ARFT04, with relative mse of 0.91). Actually, the 

main result emerging from column 2 of Table 2b is that there are no gains from the more 

sophisticated models. 

When a larger (smaller) weight is assigned to large forecast errors, as with the mace 

(mae) loss function, the relative forecasting performance of the ARTV models is stable, 

while that of LSTAR and ANN models in general deteriorates (improves), compare 

columns 2, 3, 4 of Table 2b.. This pattern is due to the fact that more complex 

specifications can generate sporadic large forecast errors, notwithstanding the automatic 

trimming, that are amplified (reduced) when using the mace (mae) loss function.  

For longer forecast horizons, 2 or 4 quarters, in general the performance of the 

ANN models worsens while that of the ARTV and LSTAR improves slightly, but not 

enough to outperform the best linear specifications, compare columns 5, 6 of Tables 2a 

and 2b. 

About the split sample analysis, a few models beat the best linear specifications in 

the ‘80s, e.g., AN1203 or LSF1a, but the gains are limited and disappear in the ‘90s, 

compare columns 7 and 8 of Table 2b. From columns 9 and 10 of the same table, the 

separate evaluation over periods of boom and recession does not indicate any 

sophisticated model as a serious competitor for the linear specifications. This finding 

provides support in favour of the extrinsic characterization of business cycles, i.e. they 

are generated by the arrival of external shocks propagated through a linear model, even 

though some even more complicated nonlinear model might perform better. 

Finally, the use of rolling rather than recursive estimation is basically ineffective for 

the ARTV and LSTAR models, while the more heavily parameterized ANN models 

typically suffer from the shorter estimation sample, which increases their relative mse. 
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Overall, there appear to be virtually no or very limited gains from the use of 

sophisticated time-varying and/or non-linear models for forecasting GDP growth, while a 

careful specification of the linear models can yield sizeable gains, in particular for longer 

forecast horizons. 

 

 

4. US inflation 
The monthly sample for the CPI index covers the period 1959:1-2004:6, and Figure 2 

graphs the month on month CPI inflation rate. The graph highlights the irregular 

behaviour of inflation during the ’60 and ‘70s, which could be better captured by a 

nonlinear specification; the decline of inflation in the early ‘80s, which is related with the 

tight monetary policy implemented in this period; and the overall decline in the volatility 

of the variable, in particular in the ‘90s. The most recent period seems to be characterized 

by a return of volatility, which is mostly due to energy and food prices.  

The main forecasting period for inflation is 1980:1-2004:6, as for GDP growth, and 

in each month of this period we repeat the unit-root test, estimation and specification 

selection for each forecasting model.  

Table 3 summarizes the results of the forecast comparison exercise for different 

forecast horizons, loss functions, sample periods, and methods of estimation. We now 

discuss the figures, focusing first on linear models and then on time-varying and non-

linear models. The third subsection conducts additional robustness analyses, evaluating 

whether the relative ranking of the models changes for a different price index or when the 

possibility of a unit root in the inflation process is taken into account. 

 

4.1 Linear models 

The figures in column 2 of Table 3a show that, when the models are compared on the 

basis of their 1-month ahead mean square forecast error relative to that of an AR model 

with constant and four lags, our benchmark also for inflation, there are usually some 

benefits from excluding a linear trend from the model and imposing the presence of a unit 

root in CPI (pre-testing yields similar values), while the use of information criteria for lag 

length selection is basically not relevant. The best AR model (i.e., the simplest model 
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with lowest relative MSE) is ARFC14, which imposes a unit root in a model with 

constant and 4 lags. However, its relative mse is only 0.91. 

Changing the loss function from the mse to the mean absolute error (mae) or mean 

absolute cubed error (mace) does not alter substantially the ranking of the linear models, 

compare columns 2, 3, 4 of Table 3a.  

Increasing the forecast horizon from one to 12 months improves the performance of 

specifications based on information criteria, so that the best models become ARFC1a or 

ARFC1b, with relative mse of 0.78, 0.72 and 0.73, for, respectively, h=3, 6 and 12, 

compare columns 2, 5, 6, 7 of Table 3a.  

From columns 2, 8, 9, 10, 11 of Table 3a, there are also minor changes in the 

ranking of the linear models when repeating the forecast evaluation exercise over either 

the two subsamples 80-89 and 90-04, or the two subsamples with, respectively, reserve 

and inflation targeting. However, the values of the loss function are substantially smaller 

in the ‘90s than in the ‘80s, and during interest rate targeting rather than reserves 

targeting, mimicking the behavior of the standard deviation of inflation, see Figure 2 and 

Table 3c. 

The use of rolling estimation highlights an interesting feature, i.e., the relevance of 

a (stochastic or deterministic) trend component in the model increases with the length of 

the estimation sample. With a 10 year window rather than recursive estimation, no AR 

models can outperform the benchmark ARFC04. There is also a marked decrease in the 

loss, about 20%, that makes the ARFC04 (combined with 10 year rolling estimation) the 

best linear forecasting method, compare columns 2, 12, 13 of Tables 3a and 3c. This 

finding provides additional evidence on the presence of parameter instability, in 

particular during the first part of the sample. 

 

4.2 Time varying and non-linear models 

In the case of the more sophisticated models, as for GDP growth, the use of information 

criteria becomes less important with the complexity of the specification. For the ANN 

models the fixed specifications are systematically better than the AIC or BIC based ones. 

A similar finding emerges for the ARTV models, while there are some minor gains from 

the use of AIC or BIC for the LSTAR, compare column 2 of Table 3b.  
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For all non-linear models there are also little gains from treating the CPI as I(1) 

rather than I(0). The more flexible specification of these models is sufficient to capture 

the trending evolution of the CPI. 

The best models in this class systematically belong to the ARTV group. This is an 

interesting finding, since a similar result emerges for the euro area, see Marcellino 

(2004). The ARTVFC03 model, where the level of CPI is modeled by an AR(3) 

specification with random walk evolution in the parameters, performs better than any of 

the linear specifications, with a relative mse of 0.82 (which is though rather close to that 

of the ARFC14, 0.91). Among the LSTAR models, the LSF1b specification (which 

models prices as I(1) using BIC model selection) is the best, and the differences with 

respect to the ARTVFC03 are minor. An interesting feature of these two models is their 

good performance throughout most of the evaluation exercises we conduct for forecasting 

inflation. 

Changing the loss function by assigning a larger or smaller weight to large forecast 

errors is not relevant for the relative ranking of the models, see columns 2, 3, 4 of Table 

3b.  

The ranking is also rather robust to changes in the forecast horizon, but the gains 

with respect to the benchmark increase with the horizon. In particular, the relative mse 

for the ARTVFC03 decreases to 0.67 for h=3, 0.60 for h=6, and 0.57 for h=12, compare 

columns 5, 6, 7 of Table 3b.  

About the split sample analysis, some ANN models perform very well in some 

subsamples, e.g., the AN0213 for the 80s or during reserve targeting, but rather poorly in 

other subsamples. Instead, the ARTV and LSTAR models have a rather stable behavior, 

and the ARTVFC03 beats the AR specifications in all cases, see columns 8, 9, 10, 11 of 

Table 3b. 

Finally, contrary to the linear case, the use of rolling rather than recursive 

estimation has minor effects on forecasts from the ARTV models, suggesting that they 

are capable of capturing the modifications in the behavior of inflation. The more heavily 

parameterized LSTAR and ANN models typically suffer from the shorter estimation 

sample, with an increase in their relative mse compared to recursive estimation, compare 
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columns 2, 12, 13 of Table 3b. The best model remains ARTVFC03, with gains of 10-

15% with respect to the best linear specifications. 

 

4.3 Additional robustness analyses 

We now evaluate whether there can be additional forecasting gains from treating inflation 

as I(1) (i.e. the CPI as I(2)), and whether this can alter the ranking of the models in the 

previous subsection. 

The target variable is tht
h

ht yyy −= ++  when the CPI ( ty ) is treated as I(1), and 

tthtts
ht

t
h

ht yhyyyhyy 22
1 ∆−−=∆−∆= +
+
++ ∑  when the CPI is I(2). This is a convenient 

formulation because, given that ty  and its lags are known when forecasting, the unknown 

component of h
hty +  conditional on the available information is equal to hty +  

independently of the choice of the order of integration. This makes the mean square 

forecast error from models for second-differenced variables directly comparable with, for 

example, that from models for first differences only. 

The results of the forecast comparison exercise are reported in columns 14, 15 and 

16 of Table 3, for h=1 and different loss functions, using the ARFC04 for I(1) prices as 

the benchmark, in order to make the values directly comparable with those in columns 2, 

3 and 4. Notice that we use the same notation for the different specifications, but it should 

be remembered that now I(0) and I(1) refer to the inflation rate rather than to the price 

level.  

With this caveat in mind, there are little gains from treating inflation as I(1), and 

virtually no differences in the ranking of the models. The best linear model from column 

14 is ARFC04, where inflation is treated as I(0), with a relative mse of 0.91. This model 

corresponds to ARFC14 in column 2, which was the best model and treated the price 

level as I(1) and inflation as I(0), though the number of lags differ due to differencing. 

The best overall model for forecasting inflation remains the nonlinear specification 

ARTVFC03, with a relative mse of 0.83. This specification also yields the lowest mae 

and mace, compare columns 15 and 16 of Table 3. Such a finding is in line with the good 

and comparable performance of ARTVFC03 and ARTVFC13 when inflation is treated as 

stationary (columns 2, 3, 4). 
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Another possible source of the forecast gains from nonlinearity is the unstable 

behaviour of inflation in the ‘70s and early ‘80s. In the previous subsection we evaluated 

the forecasts in the ‘90s only, but the ‘70s and early ‘80s were used for estimation, or 

using rolling estimation, but the ‘70s and early ‘80s were still used in most of the 

estimation windows. Therefore, we now consider recursively forecasting inflation over 

the period 1994-2004, starting the estimation sample in 1984. 

The figures in columns 17-20 of Table 3 indicate that the nonlinear models do loose 

most of their competitive advantage over the linear specifications.  

Finally, we noticed that some of the volatility in the inflation rate is due to the food 

and energy components of the CPI. Hence, the nonlinear models could outperform the 

linear specification because of a better ability in predicting these erratic components of 

inflation. 

To evaluate whether this is the case, we have repeated the forecasting exercise 

starting with the series of CPI less food and energy. A first finding that emerges from 

columns 21 to 26 of Table 3c is that, for virtually all forecast horizons, the losses of the 

benchmark model are reduced by 50% with respect to the case where food and energy 

prices are included in the CPI.  Moreover, the gains from ARTVFC03 disappear for h=1, 

3 and 6, and shrink substantially for h=12. A similar result emerges for the other 

nonlinear specifications, and overall the figures confirm the importance of the volatile 

components of the CPI to explain the good performance of nonlinear models. 

 

In summary, some time-varying or nonlinear models can produce better forecasts of 

inflation than linear specifications, the ARTV models appear to be particularly 

promising, and the gains can be quantitatively substantial, in particular at longer 

horizons. The gains do not depend on the assumed degree of persistence in inflation, 

while they appear to be related to the sample period and to a better performance of the 

ARTV models in predicting the most erratic component of CPI, i.e., food and energy 

prices. If the evaluation is conducted on the most recent period or excluding food and 

energy prices, the linear benchmark ARFC04 can be hardly beaten. 
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5. Evaluating the relevance of the forecasting gains 
In the two previous Sections we have shown that it is possible to reduce the mean square 

forecast error with respect to the benchmark AR(4) model by a careful specification of 

the linear models in the case of GDP growth, or of more sophisticated models in the case 

of inflation over a long evaluation period. Yet, in general the gains are quantitatively 

limited. In this Section we evaluate first whether the limited gains are nonetheless 

statistically significant, and then whether they are economically significant, in the sense 

of changing the conclusions of important studies on the determinants of GDP growth or 

inflation. 

 

5.1 Statistical evaluation of the forecasting gains 

To consider whether the mse reductions relative to the benchmark model are statistically 

significant, we would like to provide a confidence interval for the relative mse of each 

model at a certain confidence level, say 90%. The latter can be obtained either 

analytically or by means of simulation techniques. We prefer the latter method, which 

provides a more precise answer in finite samples. 

To obtain the empirical distribution of the relative mse, we have generated 200 

bootstrap replications of GDP growth and CPI inflation, by using the block bootstrap 

algorithm with automatic block length selection (Politis and White (2004)).3 The levels of 

the series are then recovered by cumulating the growth series, starting with the actual 

level of each variable. 

We prefer this non-parametric approach to the more standard parametric method, 

where the series are generated using the estimated parameters for the benchmark model. 

The former permits the derivation of the empirical distribution function of the relative 

mse without assuming that the benchmark model generates the data. It can therefore 

provide more reliable results in our context, where there is substantial uncertainty about 

the optimality characteristics of the benchmark. We would also like to point out that the 

list of models under comparison in this paper is fixed and taken from previous published 

work, in order to reduce possible data mining problems. 
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The 90% confidence intervals for the relative mse are reported in Table 4 for each 

forecast horizon, in panel A for GDP growth and in B for inflation.  

For GDP growth, no models yield a significantly lower mse than the benchmark, 

except the best model from Section 3, namely ARFT04, when h=1, 2.  

For inflation there is a larger set of models whose relative mse falls outside the 90% 

confidence interval, and it includes the best models identified in Section 4 for each 

forecast horizon. In particular, both ARTVFC03 and LSF1b are systematically 

significantly better than the benchmark. However, it is worth noting that here the 

comparison is conducted with respect to the AR(4) model in levels. If the best linear 

model is used as a benchmark, usually ARFC1a for inflation, the differences with respect 

to the nonlinear specifications shrink to about 10% and are only marginally statistically 

significant. 

Two final points that deserve attention are the following. First, if the statistical 

significance of the forecasting gains were assessed by means of the White’s (2000) 

reality check for data snooping, they would be even less significant. However, it is not 

clear whether such a method is appropriate in our context. In fact, it might be that some 

models are better than the simple AR(4) benchmark just by chance but, on the other hand, 

the models in our comparison are not coming from a specification search but from a list 

used in previously published papers (Stock and Watson (1999), Marcellino (2004)), 

where they were not selected on the basis of the forecast accuracy for growth and 

inflation. Second, the bootstrap algorithm requires stationarity of growth and inflation. 

The good forecasting performance of stationary AR models for these two variables 

suggests that this is indeed the case, but the superior performance of some nonlinear 

models for inflation questions it. However, if the data were resampled parametrically 

using these nonlinear models, the significance of their forecasting gains would be even 

larger. 

                                                                                                                                                 
3 Andrew Patton has compiled a Matlab computer code for implementing the above block selection 
algorithm via flat-top lag-windows; his code is now made publicly available from his website: 
http://fmg.lse.ac.uk/�patton/code.html. 
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5.2 Economic evaluation of the forecasting gains 

We now consider whether the results we have obtained can affect the conclusions of 

economic analyses on the role of macroeconomic and financial variables for 

understanding the development of GDP growth and inflation. 

The article by Stock and Watson (2003) is becoming a reference for forecasting 

GDP growth due to their careful examination of the role of financial variables and other 

macroeconomic time series. They find that the results differ during the periods 1971-84 

and 1985-99, and across countries.  

Focusing on the US over the more recent period, 1985-99, asset prices appear to 

yield only a limited forecasting gain over the short horizon, h=2, relative to a benchmark 

AR model with BIC lag length. The relative mse of pooled forecasts using asset prices as 

regressors is 0.94, compare the final column of Stock and Watson’s (2003) table 9C. 

When the forecast horizon increases to one or two years, h=4 and 8, monetary variables 

become more important, yielding a relative mse of 0.94 for h=4 and 0.89 for h=8. Other 

financial series, prices and macroeconomic variables are less useful. 

From Section 3, our best forecasting model for the whole period 1980-2004 is 

ARFT04. Table 5A indicates that overall it remains the best model also over the period 

1985-1999. It yields a relative mse with respect to the AR-BIC (ARFC1b in our notation) 

used by Stock and Watson (2003) of 0.94 for h=2, 0.89 for h=4 and 1.03 for h=8. 

Therefore, using our ARFT04 as a benchmark rather than Stock and Watson’s AR-

BIC makes financial and monetary variables basically irrelevant for up to one year ahead 

forecasts of GDP growth, while monetary series keep their importance for longer 

horizons.  

There are instead no major changes for the period 1971-84, since in this case it is 

not possible to beat Stock and Watson’s benchmark, compare Table 5A. They found that 

asset prices were particularly useful for forecasting growth during 1971-84 and this 

result, combined with their poor performance after 1984, suggests that financial markets 

could be related with the observed reduction in the volatility of GDP growth, an issue that 

deserves additional investigation. 
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The economic importance of the choice of a good benchmark for models of GDP 

growth is even more evident from the analysis of Ang, Piazzesi and Wei (2004). They 

focus on the role of the yield curve for forecasting GDP growth and conclude that the 

former is very important over the period 1990-2001, using an AR(1) as a benchmark in 

their forecasting exercise, ARFC11 in our notation. 

In Table 5B we compare the ARFC11 with other models over the period 1990-

2001. It turns out that our favorite model, ARFT04 systematically and substantially 

outperforms the ARFC11, the relative mses are 0.86 for h=1, 0.80 for h=4, 0.67 for h=8 

and 0.54 for h=12.  

If Ang’s et al. (2004) benchmark is substituted with the ARFT04, all their financial 

regressors are systematically outperformed, compare the relative mse in their tables 10, 

11, and 14. 

An interesting by-product of the split sample analysis in Tables 5A and 5B is that it 

highlights a marked decrease in the mean square error over the more recent subsamples 

compared with the period 1970-84. For h=1, the mse of the benchmark ARFC04 model is 

six times smaller in 1985-1999 than in 1970-84. This finding, combined with the good 

performance of the linear specifications in both subsamples, provides additional evidence 

in favor of the statement that the size of the shocks matters more than time-variation in 

the parameters in order to explain the reduction in volatility of GDP growth observed in 

the more recent period. 

Moving now to inflation, the influential and exhaustive analysis of Stock and 

Watson (1999a), led them to conclude that (from the abstract) “Inflation forecasts 

produced by the Phillips curve generally have been more accurate than forecasts based on 

other macroeconomic variables, including interest rates, money and commodity prices. 

These forecasts can however be improved upon using a generalized Phillips curve based 

on measures of real aggregate activity other than unemployment, especially a new index 

of aggregate activity based on 61 real economic indicator”.  

From table 5C, the best nonlinear model for the subsample 1984-1996 is again 

ARTVFC03, namely, an AR model specified in levels, with a constant, three lags, and 

time varying parameters. If we include this model in Stock and Watson’s (1999a) 

comparison, their table 4, it turns out that it has a relative mse of 0.71, which cannot be 



 26

beaten by any of the multivariate specifications, Stock and Watson’s preferred model has 

a  relative mse of 0.83.  

The results are quite different for the earlier sample, 1970-1983. In this case Stock 

and Watson’s benchmark Phillips curve systematically beats all our time series models.  

These two findings, combined with those in Table 3, column 17, indicate that 

whenever the ‘70s are included in the estimation period of models for inflation it 

becomes quite important to allow for parameter time variation (Stock and Watson 

(1999a) also detected some instability in their estimated Phillips curves). The economic 

consequences can be substantial. In particular, when the focus is on the more recent 

period, allowing for some random parameter time variation, as in our model ARTVFC03, 

matches the forecasting gains obtained from sophisticated versions of the Phillips curve.  

Another finding emerging from Table 5C is the different mse in the two subperiods 

1970-83 and 1984-1996, the latter is ten times smaller than the former using Stock and 

Watson’s benchmark. This result casts some doubts on forecast evaluation exercises 

based on a very long forecast period only, such as Stock and Watson (2002). They extract 

the factors from a very large dataset of macroeconomic variables that includes hundreds 

of series, use them as regressors in a set of alternative linear specifications for inflation, 

and compare the resulting forecasts over the period 1970-1998. 

Focusing on one year ahead forecasts for inflation, from Table 5D none of our 

models can beat Stock and Watson’s (2002) preferred factor specification. However, this 

result is just due to the reported different performance of the models over the 70’s and 

80-90’s. The different performance of models for inflation over sub-periods is also 

emphasized by Atkeson and Ohanian (2001) and Stock and Watson (2005). 

A final interesting feature of the ARTV models for inflation is the following. Let us 

consider the model ARTVFC10, namely, 

,, 1 tttttt uey +=+=∆ −θθθ         (8) 

where ty  is the (log) price level, ty∆  is monthly inflation, ),,0(~ 2
et iide σ  ),,0(~ 2

ut iidu σ  

and te  and tu  are uncorrelated at all leads and lags. The model for the change in monthly 

inflation is  

,ttt euy ∆+=∆∆           (9) 
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which is also equivalent to an IMA(1,1) model such as 

,1−+=∆∆ ttty αεε           (10) 

where the parameter α is a function of 2
eσ  and 2

uσ . The model for quarterly inflation, tx , 

becomes an IMA(1,3): 

),)(1( 1
2

−+++=∆ ttt LLx αεε          (11) 

where, denoting as usual the lag operator as L, it is tt yLLx ∆++= )1( 2 . The model for 

quarterly inflation at the quarterly rather than monthly frequency can be obtained by 

applying standard techniques for temporal aggregation of ARIMA models (see e.g. 

Marcellino (1999)). It turns out that it is an IMA(1,1) model: 

),( 1−+=∆ τττ βvvx           (12) 

where τ indexes quarterly time series, and the parameter β is again a function of 2
eσ  and 

2
uσ . This coincides with the reduced form representation of the model suggested by Stock 

and Watson (2005) for quarterly US inflation. They allow the MA parameter β to be 

time-varying by making the variance of the permanent and transitory components of 

inflation also time-varying ( 2
uσ  and 2

eσ , respectively, in our notation). 4 

The ARTVFC10 model in (8) has two main differences with respect to our 

preferred specification, ARTVFC03. First, it imposes the presence of a unit root. This has 

minor effects, since it implies only a slight deterioration in the forecasting performance. 

Second, it has less dynamics. However, the two additional (time-varying) roots in 

ARTVFC03 are substantially reduced by temporal aggregation (see, e.g. Marcellino 

(1999)). Therefore, overall, the IMA(1,1) model could represent a good approximation 

for the model for quarterly inflation implied by the ARTVFC03 specification at the 

monthly level.  

The exact model for quarterly inflation at the quarterly frequency implied by the 

ARTVFC03 is an ARMA(3,3) model whose parameters have a very complex temporal 

evolution, even if the variance of the permanent and transitory components of inflation 

                                                 
4 Stock and Watson (2005) define ty  as the (log of the) average of the price level over three months, but 
the resulting quarterly inflation series at the quarterly level are very similar, the correlation is higher than 
0.95. 
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( 2
uσ  and 2

eσ ) are constant. It would represent an interesting benchmark, e.g., for Stock 

and Watson’s (2005) and Ang, Bekaert and Wei (2005) analyses of quarterly US 

inflation. 

 

In summary, the gains from a more careful specification of the benchmark model 

for GDP growth and inflation appear to be both statistically and economically significant. 

In the case of GDP growth, focusing on a linear specification suffices, while for inflation 

evaluating more complex models can yield additional benefits when the estimation 

sample is long enough to include data before the mid-‘80s. 

 

 

6 A real time analysis 
To evaluate the role of real time data, we use quarterly vintages taken from the 

Philadelphia Federal Reserve website. In order to have a balanced panel without missing 

values and spanning the same sample period for GDP growth and inflation we use the 

sample 1960:1-2004:2 for GDP and 1960:1-2004:6 for the CPI. For GDP, in each quarter 

we use a different data set that coincides with the data on GDP that were available in that 

quarter. In the case of inflation, since the data are updated only each quarter, we use the 

same vintage for three consecutive months, until the next vintage becomes available. The 

latest 42 quarterly vintages are available. 

For computational reasons, we adopt rolling estimation with a 15-year window, 

whose results we saw are very similar to recursive estimation. The forecasts for the last 

42 quarters (i.e. 1994:1-2004:2), or corresponding months in the case of inflation, are 

then compared with the first release of the actual data. We consider the same forecast 

horizons as is the exercise with the final vintage of data, i.e., h=1, 2, 4 for GDP growth 

and h=1, 3, 6, 12 for inflation. Notice that an alternative strategy would be to add new 

data vintages as the sample period is extended, with the data earlier in the sample left 

untouched. While this approach can yield improved estimators (see e.g. Koening, Dolmas 

and Piger (2003)), it is rather different from the actual practice of real world forecasting. 

The assessment of the forecasting performance with real time data of the large set 

of non-linear models we consider is of particular interest, since we think that this is the 
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first time that these models are evaluated with real time data. A priori we might expect 

that the non-linear models are better suited to handle the revision process and 

measurement errors in real time data. On the other hand, if their specification is tailored 

for a particular vintage of data, the forecasts could be out of track in the presence of 

major data revisions.  

Starting with the linear models, for GDP growth the best specification remains 

ARFT04 at all forecast horizons, while for inflation it is virtually impossible to 

outperform the benchmark ARFC04, compare Table 6a. 

From the figures in the columns of Table 6b, we see that for the more complex 

models there is in general an even larger deterioration in the forecasting performance 

with respect to the benchmark when using the real time data, the more so the more 

complicated the specification of the model. For inflation, neither ARTVFCO3 nor LSF1b 

beat the linear benchmark, and the relative mse can be substantially larger than one at 

long horizons. 

The differences with respect to the first columns of Tables 2 and 3 using the final 

vintage of data are dramatic. Possible reasons underlying this result were suggested by 

Elliott (2002) and include differences in the lag structures for real-time and revised data, 

greater persistence in the latest-available series, and the fact that a wider variety of 

models are selected using AIC or BIC using real-time data rather than revised data. 

However, the differences with respect to the final vintage of data shrink 

substantially when the comparison is based on an equal forecast evaluation period. In 

particular, in the case of inflation, we have seen that the performance of the nonlinear 

models worsens substantially when evaluated over the subsample 1994-2004 rather than 

1980-2004, see columns 17-20 of Table 3. The figures in these columns are much closer 

to the corresponding ones in Table 6, and a similar finding holds for the values for GDP 

growth in panel B of Table 5. 

Overall, the use of real time data can worsen the forecasting performance of 

nonlinear models for growth and inflation, but the evaluation period seems to play a 

larger role. 
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7. Conclusions 
In this paper we have provided an extensive evaluation of the role of sophisticated 

nonlinear time series models for GDP growth and inflation. Our main conclusion is that 

in general linear time series models can be hardly beaten if they are carefully specified, 

and therefore still provide a good benchmark for theoretical models of growth and 

inflation. This finding is particularly evident when using real time data or considering 

only the period starting in the mid-‘80s. However, we have also identified some 

important cases where the adoption of a more complicated benchmark can alter the 

conclusions of economic analyses about the driving forces of GDP growth and inflation. 

Therefore, comparing theoretical models also with more sophisticated time series 

benchmarks can guarantee more robust conclusions. 
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 Figure 1: Quarterly GDP growth 
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Figure 2: Monthly CPI inflation  
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Table 1: Forecasting models 

 
 
Linear methods 
 
ARF(X,Y,Z)   Autoregressive models (18 models) 
     X = C (const.) or T (trend) 
     Y = 0 (stationary), 1 (I(1)), P (pre-test) 
     Z = 4 (4 lags), a (AIC), b (BIC) 
 
NOCHANGE   No change forecast (1 model) 
 
 
Time-varying methods 
 
ARTVF(X,Y,Z)  Time-varying AR models (9 models) 
     X = C (const.)  
     Y = 0 (stationary), 1 (I(1)), P (pre-test) 
     Z = 3 (3 lags), a (AIC), b (BIC) 
 
LS(X,Y,Z)   Logistic smooth transition (6 models) 
     X = 0 (stationary), 1 (I(1)), P (pre-test) 
     Y = transition variable, 10 ( tt y=ζ ), 06 ( 6−−= ttt yyζ ) 
     Z = 3 (p, lag length) 
LSF(X,W)   Logistic smooth transition (6 models) 
     X = 0 (stationary), 1 (I(1)), P (pre-test) 
     W = a (AIC on transition variable and p), b (BIC) 
 
 
Non-linear methods 
 
AN(X,Y,Z,W)   Artificial neural network models (9 models) 
     X = 0 (stationary), 1 (I(1)), P (pre-test) 
     Y = 2 (n1) 
     Z = 0, 1, 2 (n2) 
     W = 3 (p, lag length) 
ANF(X,S)   Artificial neural network models (6 models) 
     X = 0 (stationary), 1 (I(1)), P (pre-test) 
     S = a (AIC on n1, n2, p), b (BIC) 
 
 
 
 



Table 2: Forecasting US GDP growth

h=2 h=4

Col. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

MODEL MSE MAE MACE MSE 80-89 MSE 90-04 MSE 
Booms

MSE 
Recessions

window 10 
years

window 15 
years

ARFC04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ARFT04 0.91 0.97 0.89 0.82 0.73 0.82 0.92 0.87 1.13 1.03 1.02
ARFC14 0.95 1.00 0.95 0.91 0.91 0.80 0.98 0.87 1.34 0.97 0.94
ARFT14 0.98 1.00 0.95 1.00 1.02 0.92 0.99 0.97 1.00 1.00 0.97
ARFCP4 0.95 1.00 0.95 0.91 0.91 0.80 0.98 0.87 1.34 0.97 0.94
ARFTP4 0.98 1.00 0.95 1.00 1.02 0.92 0.99 0.97 1.00 0.97 0.94
ARFC0a 1.01 1.00 1.01 1.03 1.01 1.01 1.01 1.00 1.02 1.00 1.00
ARFT0a 0.91 0.96 0.90 0.82 0.75 0.83 0.93 0.87 1.14 1.07 1.02
ARFC1a 0.96 0.99 0.97 0.91 0.91 0.81 0.98 0.87 1.39 0.96 0.94
ARFT1a 0.99 1.00 0.99 1.01 1.03 0.94 1.00 0.98 1.06 1.00 0.97
ARFCPa 0.96 0.99 0.97 0.91 0.91 0.81 0.98 0.87 1.39 0.96 0.94
ARFTPa 0.99 1.00 0.99 1.01 1.03 0.94 1.00 0.98 1.06 0.96 0.94
ARFC0b 1.09 1.03 1.15 1.02 1.01 1.17 1.07 1.07 1.16 1.00 1.00
ARFT0b 0.98 1.00 0.98 0.84 0.75 1.02 0.97 0.93 1.21 0.97 0.99
ARFC1b 1.05 1.03 1.13 0.92 0.91 0.93 1.07 0.93 1.62 1.03 1.01
ARFT1b 1.07 1.02 1.12 1.01 1.00 1.09 1.06 1.04 1.22 1.06 1.04
ARFCPb 1.05 1.03 1.13 0.92 0.91 0.93 1.07 0.93 1.62 1.03 1.01
ARFTPb 1.07 1.02 1.12 1.01 1.00 1.09 1.06 1.04 1.22 1.03 1.01
NOCHANGE 3.33 2.02 5.29 4.30 4.47 4.96 3.08 3.94 0.38 3.33 3.27
ARTVFC03 1.03 1.04 1.04 1.01 1.10 0.97 1.04 1.01 1.16 0.99 0.97
ARTVFC13 1.00 1.03 0.99 0.94 0.97 0.93 1.02 0.95 1.29 0.96 0.94
ARTVFCP3 1.00 1.03 0.99 0.94 0.97 0.93 1.02 0.95 1.29 0.96 0.94
ARTVFC0a 1.13 1.08 1.20 1.15 1.29 1.03 1.14 1.14 1.07 0.99 1.12
ARTVFC1a 1.03 1.03 1.05 1.04 0.90 0.91 1.04 1.00 1.17 0.97 0.96
ARTVFCPa 1.03 1.03 1.05 1.04 0.90 0.91 1.04 1.00 1.17 0.97 1.60
ARTVFC0b 1.13 1.08 1.20 1.15 1.23 1.03 1.14 1.14 1.07 0.99 1.39
ARTVFC1b 1.03 1.02 1.06 0.97 0.86 0.91 1.05 1.00 1.17 0.97 1.92
ARTVFCPb 1.03 1.02 1.06 0.97 0.86 0.91 1.05 1.00 1.17 0.97 0.96
LS0103 1.07 1.09 1.11 0.95 0.96 1.16 1.06 1.04 1.21 1.24 1.05
LS1103 0.95 1.04 0.95 0.89 0.99 0.79 0.98 0.85 1.46 0.95 0.94
LSP103 0.95 1.00 0.95 0.89 0.99 0.79 0.98 0.85 1.46 0.95 0.94
LS0063 1.04 1.00 1.01 1.10 1.08 0.84 1.07 1.06 0.91 1.06 1.02
LS1063 0.99 1.07 0.96 0.92 0.93 0.85 1.01 0.92 1.31 0.97 0.97
LSP063 0.99 1.03 0.96 0.92 0.93 0.85 1.01 0.92 1.31 0.97 0.97
LSF0a 1.46 1.03 1.92 1.10 1.53 4.32 1.02 1.66 0.48 1.42 1.22
LSF1a 1.19 1.24 1.30 0.92 0.85 0.75 1.25 1.13 1.46 1.31 1.29
LSFPa 1.19 1.13 1.30 0.92 0.85 0.75 1.25 1.13 1.46 1.31 1.29
LSF0b 1.08 1.13 1.16 1.21 1.41 0.93 1.11 0.95 1.74 1.27 1.07
LSF1b 1.18 1.07 1.36 1.05 0.85 0.96 1.22 1.07 1.76 1.18 1.07
LSFPb 1.18 1.08 1.36 1.05 0.85 0.96 1.22 1.07 1.76 1.18 1.07
AN0203 1.22 1.08 1.29 1.26 1.75 1.28 1.20 1.15 1.51 1.44 3.51
AN1203 1.30 1.14 1.64 1.01 1.31 0.71 1.39 1.19 1.82 1.91 1.41
ANP203 1.30 1.14 1.64 1.01 1.31 0.71 1.39 1.19 1.82 1.91 1.41
AN0213 1.63 1.14 2.21 2.71 5.25 1.88 1.59 1.35 2.96 1.68 1.21
AN1213 1.55 1.28 1.89 1.28 1.43 1.92 1.49 1.61 1.28 1.78 1.60
ANP213 1.55 1.28 1.89 1.28 1.43 1.92 1.49 1.61 1.28 1.78 1.60
AN0223 1.13 1.28 1.29 1.47 1.40 1.00 1.15 0.94 2.07 0.97 1.39
AN1223 1.81 1.07 2.55 3.15 1.42 1.06 1.92 1.73 2.18 0.99 1.92
ANP223 1.81 1.36 2.55 3.15 1.42 1.06 1.92 1.73 2.18 1.38 1.92
ANF0a 1.01 1.36 1.04 1.58 2.07 0.84 1.04 0.92 1.43 1.68 1.67
ANF1a 1.87 1.02 2.49 2.00 1.30 1.67 1.90 1.86 1.91 2.41 2.48
ANFPa 1.87 1.44 2.49 2.00 1.30 1.67 1.90 1.86 1.91 2.41 2.48
ANF0b 1.13 1.44 1.32 1.13 1.08 0.77 1.19 0.94 2.08 1.34 1.40
ANF1b 1.11 1.05 1.18 1.31 1.13 1.25 1.09 1.05 1.41 1.58 1.71
ANFPb 1.11 1.09 1.18 1.31 1.13 1.25 1.09 1.05 1.41 1.58 1.71

Notes:
See Table 1 for the definition of the models. Relative losses wrt ARFC04
Recursive: first estimation sample 1959-1979, forecast sample 1980-2004
Recursive split: first estimation sample 1959-1979, various forecast samples
Rolling: forecast sample 1980-2004, first estimation sample: 1970-1979 or 1965-1979.

Recursive
h=1

Rolling
h=1

Recursive split
h=1
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ar

MSE

C - Benchmark Loss 
(*100.000) 2.529 399.836 0.019 6.971 23.030 2.5762.5311.930 2.655 2.332 4.279



Table 3: Forecasting US inflation

h=3 h=6 h=12 h=3 h=6 h=12
Col. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]

MODEL MSE MAE MACE 80-89 90-04 Reserves  
targeting

interest rate 
targeting

window 10 
years

window 15 
years MSE MAE MACE h=1 h=3 h=6 h=12 MSE MAE MACE

ARFC04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ARFT04 1.03 1.04 1.01 1.14 1.33 1.71 0.99 1.07 0.94 1.05 1.05 1.04 0.97 1.00 1.06 1.02 1.05 1.12 1.07 1.02 1.05 0.96 1.09 1.32 1.93
ARFC14 0.91 0.94 0.89 0.87 0.86 0.82 0.86 0.97 0.81 0.93 1.03 0.98 0.96 0.96 1.10 1.04 1.13 1.21 1.27 0.80 0.90 0.67 0.60 0.45 0.43
ARFT14 0.99 1.00 0.97 0.99 1.02 1.13 1.00 0.98 0.94 1.00 1.00 0.99 0.97 0.96 1.11 1.01 1.01 1.06 1.11 1.00 1.01 0.96 0.97 1.06 1.39
ARFCP4 0.91 0.94 0.89 0.87 0.86 0.82 0.86 0.97 0.81 0.93 1.03 0.98 0.94 0.95 1.05 1.04 1.13 1.21 1.27 0.80 0.90 0.67 0.60 0.45 0.43
ARFTP4 0.91 0.94 0.89 0.87 0.86 0.82 0.86 0.97 0.81 0.93 1.03 0.98 0.96 0.96 1.10 1.04 1.13 1.21 1.27 0.80 0.90 0.67 0.60 0.45 0.43
ARFC0a 0.95 0.96 0.95 0.85 0.80 0.78 0.92 0.98 0.89 0.97 1.00 0.98 0.91 0.93 1.03 1.02 1.01 1.04 1.05 0.93 0.95 0.94 0.79 0.70 0.68
ARFT0a 0.97 0.99 0.96 0.95 1.03 1.35 0.92 1.03 0.86 1.00 1.06 1.02 0.94 0.96 1.06 1.04 1.05 1.16 1.15 0.95 0.99 0.89 0.87 0.96 1.51
ARFC1a 0.91 0.93 0.92 0.78 0.72 0.73 0.87 0.94 0.83 0.92 1.01 0.97 0.92 0.93 1.06 1.05 1.11 1.12 1.27 0.79 0.88 0.71 0.56 0.42 0.38
ARFT1a 0.95 0.96 0.96 0.85 0.79 0.96 0.94 0.95 0.91 0.95 1.00 0.97 0.93 0.92 1.07 1.02 1.03 1.05 1.22 0.92 0.94 0.94 0.80 0.83 1.15
ARFCPa 0.91 0.93 0.92 0.78 0.72 0.73 0.87 0.94 0.83 0.92 1.01 0.97 0.92 0.93 1.05 1.05 1.11 1.12 1.27 0.79 0.88 0.71 0.56 0.42 0.38
ARFTPa 0.91 0.93 0.92 0.78 0.72 0.73 0.87 0.94 0.83 0.92 1.01 0.97 0.92 0.93 1.06 1.05 1.11 1.12 1.27 0.79 0.88 0.71 0.56 0.42 0.38
ARFC0b 0.95 0.96 0.95 0.85 0.80 0.78 0.92 0.98 0.89 0.97 1.04 0.99 0.91 0.93 1.04 1.02 0.99 1.03 0.99 0.98 0.97 1.00 0.82 0.70 0.68
ARFT0b 1.00 1.00 1.00 0.95 1.03 1.35 0.96 1.03 0.99 1.00 1.08 1.04 0.96 0.97 1.09 1.04 1.05 1.23 1.10 1.00 1.02 0.96 0.89 0.96 1.53
ARFC1b 0.92 0.93 0.93 0.78 0.72 0.73 0.88 0.94 0.83 0.93 1.05 0.98 0.94 0.94 1.10 1.06 1.16 1.24 1.39 0.81 0.88 0.73 0.56 0.42 0.38
ARFT1b 0.98 0.98 0.99 0.85 0.79 0.97 1.00 0.95 1.03 0.96 1.04 1.00 0.94 0.94 1.09 1.02 1.00 1.12 1.09 0.97 0.98 0.96 0.86 0.84 1.24
ARFCPb 0.92 0.93 0.93 0.78 0.72 0.73 0.88 0.94 0.83 0.93 1.05 0.98 0.93 0.94 1.07 1.06 1.16 1.24 1.39 0.81 0.88 0.73 0.56 0.42 0.38
ARFTPb 0.92 0.93 0.93 0.78 0.72 0.73 0.88 0.94 0.83 0.93 1.05 0.98 0.94 0.94 1.10 1.06 1.16 1.24 1.39 0.81 0.88 0.73 0.56 0.42 0.38

NOCHANGE 2.28 1.73 2.71 3.29 4.43 4.63 2.24 2.33 1.30 2.49 2.64 2.57 1.13 1.07 1.27 1.91 3.06 5.41 9.40 4.70 2.59 6.60 6.47 8.37 9.08
ARTVFC03 0.82 0.89 0.74 0.67 0.60 0.57 0.78 0.85 0.82 0.81 0.86 0.84 0.83 0.91 0.84 1.00 1.03 1.32 1.92 0.80 0.87 0.75 0.59 0.50 0.27
ARTVFC13 0.82 0.91 0.74 0.70 0.65 0.59 0.78 0.86 0.81 0.82 0.88 0.85 0.98 0.99 1.08 1.00 1.04 1.06 1.13 0.78 0.87 0.69 0.63 0.53 0.38
ARTVFCP3 0.82 0.91 0.74 0.70 0.65 0.59 0.78 0.86 0.81 0.82 0.88 0.85 0.89 0.93 0.97 1.00 1.04 1.06 1.13 0.78 0.87 0.69 0.63 0.53 0.38
ARTVFC0a 0.94 0.95 0.93 0.83 0.77 0.74 0.91 0.97 0.89 0.95 1.88 0.90 0.91 0.93 1.01 0.99 1.07 1.33 2.13 0.90 0.95 0.84 0.75 0.64 0.61
ARTVFC1a 0.91 0.94 0.90 0.80 0.74 0.79 0.86 0.95 0.82 0.93 0.98 0.96 0.99 0.95 1.18 1.03 1.11 1.12 1.39 0.82 0.91 0.70 0.60 0.48 0.53
ARTVFCPa 0.91 0.94 0.90 0.80 0.74 0.79 0.86 0.95 0.82 0.93 0.98 0.96 0.91 0.93 1.03 1.03 1.11 1.12 1.39 0.82 0.91 0.70 0.60 0.48 0.53
ARTVFC0b 0.94 0.95 0.93 0.83 0.77 0.74 0.91 0.97 0.89 0.95 1.83 0.91 0.91 0.93 1.01 0.99 1.08 1.32 2.14 0.90 0.95 0.84 0.75 0.64 0.61
ARTVFC1b 0.91 0.94 0.90 0.80 0.74 0.79 0.86 0.95 0.82 0.93 0.98 0.96 0.97 0.94 1.13 1.03 1.11 1.12 1.39 0.82 0.91 0.70 0.60 0.48 0.53
ARTVFCPb 0.91 0.94 0.90 0.80 0.74 0.79 0.86 0.95 0.82 0.93 0.98 0.96 0.91 0.93 1.03 1.03 1.11 1.12 1.39 0.82 0.91 0.70 0.60 0.48 0.53

LS0103 0.89 0.94 0.83 0.83 1.91 0.62 0.85 0.92 0.90 0.88 0.92 0.90 0.93 0.95 1.03 0.97 0.99 1.15 1.83 0.84 0.92 0.75 0.96 1.85 1.28
LS1103 0.93 0.95 0.92 0.84 0.91 0.94 0.88 0.99 0.94 0.93 1.27 1.14 0.96 0.96 1.07 1.24 1.47 1.27 1.86 0.77 0.87 0.67 0.62 0.48 0.46
LSP103 0.93 0.95 0.92 0.84 0.91 0.94 0.88 0.99 0.94 0.93 1.27 1.14 0.94 0.95 1.04 1.24 1.47 1.27 1.86 0.77 0.87 0.67 0.62 0.48 0.46
LS0063 0.90 0.92 0.92 0.96 0.66 0.68 0.94 0.87 0.87 0.91 0.91 0.89 0.94 0.95 1.07 1.05 1.13 1.64 1.71 0.83 0.88 0.84 0.72 0.62 0.66
LS1063 0.90 0.91 0.92 0.77 0.67 0.67 0.91 0.89 0.87 0.90 0.98 0.91 0.90 0.93 1.00 1.10 1.07 1.10 1.25 0.78 0.84 0.73 0.58 0.46 0.35
LSP063 0.90 0.91 0.92 0.77 0.67 0.67 0.91 0.89 0.87 0.90 0.98 0.91 0.92 0.94 1.02 1.10 1.07 1.10 1.25 0.78 0.84 0.73 0.58 0.46 0.35
LSF0a 0.94 0.97 0.88 1.16 1.60 1.49 0.92 0.96 0.86 0.96 0.98 0.95 0.99 0.95 1.29 1.03 1.05 1.13 2.35 0.87 0.88 1.00 1.20 1.42 1.09
LSF1a 1.00 0.95 1.15 0.75 0.74 0.75 1.05 0.94 0.88 1.02 1.17 1.21 0.95 0.93 1.12 1.31 1.01 1.11 0.84 0.78 0.84 0.78 0.59 0.50 0.37
LSFPa 1.00 0.95 1.15 0.75 0.74 0.75 1.05 0.94 0.88 1.02 1.17 1.21 0.91 0.93 1.02 1.31 1.01 1.11 0.84 0.78 0.84 0.78 0.59 0.50 0.37
LSF0b 0.93 0.95 0.91 1.09 1.62 1.44 0.95 0.92 1.04 0.91 0.95 0.91 0.97 0.94 1.27 1.00 0.94 1.09 1.97 0.90 0.91 0.96 1.22 1.45 1.04
LSF1b 0.84 0.89 0.81 0.73 0.67 0.67 0.85 0.84 0.82 0.85 1.09 0.97 0.96 0.94 1.14 1.24 1.05 1.01 0.84 0.78 0.84 0.73 0.59 0.49 0.37
LSFPb 0.84 0.89 0.81 0.73 0.67 0.67 0.85 0.84 0.82 0.85 1.09 0.97 0.89 0.91 1.00 1.24 1.05 1.01 0.84 0.78 0.84 0.73 0.59 0.49 0.37
AN0203 0.94 0.97 0.89 1.42 1.99 2.14 0.86 1.01 0.89 0.95 1.07 1.03 1.00 0.98 1.19 1.17 1.12 3.67 5.81 0.81 0.87 0.74 1.54 0.77 5.24
AN1203 1.07 1.02 1.14 0.84 0.96 0.91 1.01 1.13 1.15 1.05 1.23 1.62 1.09 1.01 1.40 1.23 1.32 1.31 1.42 0.90 0.99 0.72 0.71 0.48 0.59
ANP203 1.07 1.02 1.14 0.84 0.96 0.91 1.01 1.13 1.15 1.05 1.23 1.62 1.05 0.99 1.32 1.23 1.32 1.31 1.42 0.90 0.99 0.72 0.71 0.48 0.59
AN0213 0.96 1.01 0.83 1.47 3.21 3.89 0.79 1.12 0.55 1.04 1.40 7.75 1.41 1.11 2.24 2.20 1.60 2.49 5.30 1.24 1.09 1.37 9.21 3.83 3.96
AN1213 1.10 1.01 1.30 1.09 0.98 1.03 1.06 1.13 1.08 1.10 1.36 1.51 1.22 1.07 1.67 1.84 1.45 1.75 1.99 0.96 1.01 0.84 0.70 0.73 0.57
ANP213 1.10 1.01 1.30 1.09 0.98 1.03 1.06 1.13 1.08 1.10 1.36 1.51 1.38 1.09 2.18 1.84 1.45 1.75 1.99 0.96 1.01 0.84 0.70 0.73 0.57
AN0223 0.91 0.96 0.84 1.28 2.05 2.63 0.84 0.98 0.80 0.93 1.17 1.16 0.92 0.92 1.07 1.03 1.03 1.77 1.96 1.08 1.05 1.09 1.49 2.21 2.71
AN1223 0.98 0.97 1.04 0.91 0.95 1.38 0.95 1.01 0.92 1.00 1.87 1.02 0.94 0.96 1.01 1.48 1.64 1.40 1.54 0.99 1.04 0.86 0.77 0.62 0.82
ANP223 0.98 0.97 1.04 0.91 0.95 1.38 0.95 1.01 0.92 1.00 1.87 1.02 0.88 0.92 0.96 1.48 1.64 1.40 1.54 0.99 1.04 0.86 0.77 0.62 0.82
ANF0a 1.02 1.04 0.97 1.34 2.00 2.99 0.87 1.17 0.78 1.07 1.24 1.20 1.14 1.04 1.49 1.10 1.51 1.98 3.71 1.02 0.97 1.09 1.26 1.65 2.85
ANF1a 1.70 1.16 3.25 1.03 0.84 0.96 1.06 2.31 1.18 1.81 1.57 1.34 1.49 1.06 3.18 1.54 1.44 1.65 2.48 0.96 0.99 0.87 0.75 0.66 0.51
ANFPa 1.70 1.16 3.25 1.03 0.84 0.96 1.06 2.31 1.18 1.81 1.57 1.34 1.36 1.06 2.63 1.54 1.44 1.65 2.48 0.96 0.99 0.87 0.75 0.66 0.51
ANF0b 1.03 1.02 1.03 1.38 2.06 3.07 0.95 1.11 0.91 1.06 1.13 1.24 0.90 0.93 1.01 1.01 1.27 1.64 3.15 1.19 1.07 1.40 1.35 2.02 3.15
ANF1b 1.00 0.97 1.12 0.96 0.81 1.05 1.02 0.99 0.67 1.07 1.56 1.78 0.98 0.97 1.11 1.10 1.21 1.44 2.45 0.97 1.02 0.84 0.65 0.48 0.34
ANFPb 1.00 0.97 1.12 0.96 0.81 1.05 1.02 0.99 0.67 1.07 1.56 1.78 0.92 0.94 1.03 1.10 1.21 1.44 2.45 0.97 1.02 0.84 0.65 0.48 0.34

Notes:
See Table 1 for the definition of the models. Relative losses wrt ARFC04
Recursive: first estimation sample 1959-1979, forecast sample 1980-2004
Recursive split: first estimation sample 1959-1979, various forecast samples
Rolling: forecast sample 1980-2004, first estimation sample: 1970-1979 or 1965-1979.
No food and energy: recursive, first estimation sample 1959-1979, forecast sample 1980-2004

Relative to ARFC04 with I(1) CPI

Recursive No food and EnergyRecursive Split Rolling Estimation 84-93I(2) 
h=1 h=1MSE, h=1 MSE, h=1 Forecasts 94-04h=1

MSE MSE
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C - Benchmark Loss 
(*100.000) 0.473 160.940 0.002 2.264 6.174 21.843 0.2130.393 1.492 3.011 6.927 109.387 0.001 1.252 3.611 12.9050.657 0.374 2.371 0.407 0.383 0.393 0.473 160.940 0.002



Table 4: Evaluating the statistical significance of the forecast gains

Col. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]

MODEL
no 

bootstra
p

5% 95%
no 

bootstra
p

5% 95%
no 

bootstra
p

5% 95%
No 

bootstra
p

5% 95%
No 

bootstra
p

5% 95%
No 

bootstra
p

5% 95%
No 

bootstra
p

5% 95%

ARFC04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ARFT04 0.91 0.92 1.11 0.82 0.86 1.25 0.73 0.72 1.54 1.03 0.99 1.03 1.14 0.95 1.10 1.33 0.89 1.21 1.71 0.78 1.73
ARFC14 0.95 0.92 1.05 0.91 0.85 1.08 0.91 0.69 1.15 0.91 0.96 1.01 0.87 0.90 1.02 0.86 0.85 1.03 0.82 0.78 1.07
ARFT14 0.98 0.94 1.04 1.00 0.92 1.06 1.02 0.88 1.09 0.99 0.96 1.01 0.99 0.94 1.01 1.02 0.93 1.02 1.13 0.91 1.06
ARFCP4 0.95 0.92 1.05 0.91 0.85 1.08 0.91 0.69 1.15 0.91 0.96 1.01 0.87 0.90 1.02 0.86 0.85 1.03 0.82 0.78 1.07
ARFTP4 0.98 0.94 1.04 1.00 0.92 1.06 1.02 0.88 1.09 0.91 0.96 1.01 0.87 0.90 1.02 0.86 0.85 1.03 0.82 0.78 1.07
ARFC0a 1.01 0.96 1.05 1.03 0.97 1.06 1.01 0.95 1.07 0.95 0.95 1.01 0.85 0.92 1.02 0.80 0.92 1.02 0.78 0.94 1.02
ARFT0a 0.91 0.92 1.13 0.82 0.85 1.25 0.75 0.72 1.64 0.97 0.95 1.03 0.95 0.90 1.10 1.03 0.86 1.23 1.35 0.77 1.65
ARFC1a 0.96 0.91 1.07 0.91 0.84 1.07 0.91 0.70 1.16 0.91 0.94 1.01 0.78 0.88 1.01 0.72 0.83 1.01 0.73 0.76 1.07
ARFT1a 0.99 0.94 1.07 1.01 0.93 1.07 1.03 0.88 1.11 0.95 0.95 1.02 0.85 0.91 1.02 0.79 0.90 1.02 0.96 0.90 1.08
ARFCPa 0.96 0.91 1.07 0.91 0.84 1.07 0.91 0.70 1.16 0.91 0.94 1.01 0.78 0.88 1.01 0.72 0.83 1.01 0.73 0.76 1.07
ARFTPa 0.99 0.94 1.07 1.01 0.93 1.07 1.03 0.88 1.11 0.91 0.94 1.01 0.78 0.88 1.01 0.72 0.83 1.01 0.73 0.76 1.07
ARFC0b 1.09 0.95 1.08 1.02 0.94 1.07 1.01 0.93 1.07 0.95 0.97 1.03 0.85 0.93 1.03 0.80 0.93 1.04 0.78 0.96 1.04
ARFT0b 0.98 0.92 1.14 0.84 0.86 1.25 0.75 0.73 1.57 1.00 0.96 1.06 0.95 0.90 1.10 1.03 0.87 1.23 1.35 0.79 1.65
ARFC1b 1.05 0.90 1.06 0.92 0.83 1.10 0.91 0.70 1.14 0.92 0.95 1.03 0.78 0.89 1.03 0.72 0.84 1.04 0.73 0.78 1.08
ARFT1b 1.07 0.94 1.08 1.01 0.92 1.10 1.00 0.88 1.11 0.98 0.96 1.03 0.85 0.92 1.04 0.79 0.91 1.05 0.97 0.91 1.09
ARFCPb 1.05 0.90 1.06 0.92 0.83 1.10 0.91 0.70 1.14 0.92 0.95 1.03 0.78 0.89 1.03 0.72 0.84 1.04 0.73 0.78 1.08
ARFTPb 1.07 0.94 1.08 1.01 0.92 1.10 1.00 0.88 1.11 0.92 0.95 1.03 0.78 0.89 1.03 0.72 0.84 1.04 0.73 0.78 1.08

NOCHANGE 3.33 1.35 2.90 4.30 1.54 4.01 4.47 1.70 6.07 2.28 2.33 5.96 3.29 3.13 7.02 4.43 3.63 7.19 4.63 3.27 7.47
ARTVFC03 1.03 0.95 1.13 1.01 0.93 1.18 1.10 0.87 1.28 0.82 0.94 1.08 0.67 0.89 1.38 0.60 0.94 1.58 0.57 0.91 1.90
ARTVFC13 1.00 0.92 1.12 0.94 0.87 1.11 0.97 0.77 1.14 0.82 0.95 1.11 0.70 0.91 1.41 0.65 0.87 1.54 0.59 0.84 1.63
ARTVFCP3 1.00 0.92 1.12 0.94 0.87 1.11 0.97 0.77 1.14 0.82 0.95 1.11 0.70 0.91 1.41 0.65 0.87 1.54 0.59 0.84 1.63
ARTVFC0a 1.13 0.94 1.26 1.15 0.92 1.35 1.29 0.84 1.47 0.94 0.99 1.42 0.83 0.94 1.74 0.77 0.95 1.98 0.74 0.93 1.90
ARTVFC1a 1.03 0.95 1.25 1.04 0.91 1.34 0.90 0.77 1.45 0.91 0.95 1.16 0.80 0.90 1.45 0.74 0.85 1.65 0.79 0.79 1.42
ARTVFCPa 1.03 0.95 1.25 1.04 0.91 1.34 0.90 0.77 1.45 0.91 0.95 1.16 0.80 0.90 1.45 0.74 0.85 1.65 0.79 0.79 1.42
ARTVFC0b 1.13 0.94 1.26 1.15 0.92 1.35 1.23 0.84 1.43 0.94 0.99 1.41 0.83 0.94 1.75 0.77 0.94 2.00 0.74 0.93 1.93
ARTVFC1b 1.03 0.94 1.15 0.97 0.89 1.22 0.86 0.76 1.29 0.91 0.95 1.15 0.80 0.90 1.42 0.74 0.85 1.66 0.79 0.80 1.40
ARTVFCPb 1.03 0.94 1.15 0.97 0.89 1.22 0.86 0.76 1.29 0.91 0.95 1.15 0.80 0.90 1.42 0.74 0.85 1.66 0.79 0.80 1.40

LS0103 1.07 0.97 1.36 0.95 0.94 1.45 0.96 0.89 1.96 0.89 0.99 1.26 0.83 0.99 1.88 1.91 0.96 2.07 0.62 0.99 2.31
LS1103 0.95 0.87 1.19 0.89 0.81 1.21 0.99 0.71 1.24 0.93 0.90 1.11 0.84 0.86 1.12 0.91 0.85 1.29 0.94 0.79 1.20
LSP103 0.95 0.87 1.19 0.89 0.81 1.21 0.99 0.71 1.24 0.93 0.90 1.11 0.84 0.86 1.12 0.91 0.85 1.29 0.94 0.79 1.20
LS0063 1.04 0.96 1.24 1.10 0.95 1.41 1.08 0.93 1.62 0.90 0.92 1.07 0.96 0.88 1.39 0.66 0.95 1.92 0.68 0.98 2.13
LS1063 0.99 0.91 1.18 0.92 0.85 1.23 0.93 0.74 1.24 0.90 0.91 1.03 0.77 0.84 1.11 0.67 0.81 1.18 0.67 0.75 1.19
LSP063 0.99 0.91 1.18 0.92 0.85 1.23 0.93 0.74 1.24 0.90 0.91 1.03 0.77 0.84 1.11 0.67 0.81 1.18 0.67 0.75 1.19
LSF0a 1.46 0.98 1.52 1.10 0.98 1.85 1.53 0.94 2.79 0.94 0.95 1.29 1.16 0.94 2.12 1.60 0.97 2.52 1.49 0.99 3.14
LSF1a 1.19 0.91 1.38 0.92 0.87 1.44 0.85 0.75 1.46 1.00 0.92 1.22 0.75 0.85 1.30 0.74 0.82 1.73 0.75 0.79 1.47
LSFPa 1.19 0.91 1.38 0.92 0.87 1.44 0.85 0.75 1.46 1.00 0.92 1.22 0.75 0.85 1.30 0.74 0.82 1.73 0.75 0.79 1.47
LSF0b 1.08 0.96 1.41 1.21 0.97 1.72 1.41 0.89 2.59 0.93 0.94 1.21 1.09 0.98 1.87 1.62 1.01 2.76 1.44 0.99 3.24
LSF1b 1.18 0.89 1.25 1.05 0.84 1.30 0.85 0.72 1.42 0.84 0.92 1.12 0.73 0.86 1.24 0.67 0.81 1.35 0.67 0.77 1.41
LSFPb 1.18 0.89 1.25 1.05 0.84 1.30 0.85 0.72 1.42 0.84 0.92 1.12 0.73 0.86 1.24 0.67 0.81 1.35 0.67 0.77 1.41
AN0203 1.22 1.01 1.63 1.26 1.02 2.26 1.75 1.00 3.46 0.94 1.01 3.20 1.42 1.06 3.94 1.99 1.17 4.16 2.14 1.15 5.24
AN1203 1.30 0.89 1.37 1.01 0.80 1.29 1.31 0.71 1.29 1.07 0.92 1.14 0.84 0.88 1.21 0.96 0.85 1.26 0.91 0.78 1.32
ANP203 1.30 0.89 1.37 1.01 0.80 1.29 1.31 0.71 1.29 1.07 0.92 1.14 0.84 0.88 1.21 0.96 0.85 1.26 0.91 0.78 1.32
AN0213 1.63 1.06 1.90 2.71 1.07 2.80 5.25 1.30 5.46 0.96 1.09 3.73 1.47 1.29 4.44 3.21 1.53 5.85 3.89 1.71 9.26
AN1213 1.55 0.87 1.57 1.28 0.87 1.47 1.43 0.77 1.57 1.10 0.93 1.32 1.09 0.88 1.30 0.98 0.87 1.40 1.03 0.80 1.42
ANP213 1.55 0.87 1.57 1.28 0.87 1.47 1.43 0.77 1.57 1.10 0.93 1.32 1.09 0.88 1.30 0.98 0.87 1.40 1.03 0.80 1.42
AN0223 1.13 1.02 1.46 1.47 1.03 1.97 1.40 1.05 3.18 0.91 1.02 1.58 1.28 1.06 2.86 2.05 1.18 4.31 2.63 1.11 5.13
AN1223 1.81 0.86 1.47 3.15 0.86 1.47 1.42 0.73 1.51 0.98 0.89 1.23 0.91 0.87 1.24 0.95 0.85 1.28 1.38 0.82 1.40
ANP223 1.81 0.86 1.47 3.15 0.86 1.47 1.42 0.73 1.51 0.98 0.89 1.23 0.91 0.87 1.24 0.95 0.85 1.28 1.38 0.82 1.40
ANF0a 1.01 1.01 1.59 1.58 1.03 2.41 2.07 1.14 4.33 1.02 1.02 1.52 1.34 1.10 3.32 2.00 1.14 4.40 2.99 1.38 6.02
ANF1a 1.87 0.97 1.70 2.00 0.93 1.84 1.30 0.80 1.81 1.70 0.90 1.47 1.03 0.91 1.49 0.84 0.90 1.54 0.96 0.82 1.63
ANFPa 1.87 0.97 1.70 2.00 0.93 1.84 1.30 0.80 1.81 1.70 0.90 1.47 1.03 0.91 1.49 0.84 0.90 1.54 0.96 0.82 1.63
ANF0b 1.13 0.96 1.36 1.13 0.97 1.78 1.08 0.97 3.21 1.03 0.99 1.28 1.38 1.08 3.07 2.06 1.16 4.26 3.07 1.35 6.27
ANF1b 1.11 0.87 1.36 1.31 0.85 1.27 1.13 0.72 1.26 1.00 0.92 1.25 0.96 0.87 1.28 0.81 0.84 1.39 1.05 0.82 1.50
ANFPb 1.11 0.87 1.36 1.31 0.85 1.27 1.13 0.72 1.26 1.00 0.92 1.25 0.96 0.87 1.28 0.81 0.84 1.39 1.05 0.82 1.50

Notes:
See Table 1 for the definition of the models. Relative losses wrt ARFC04
The intervals are based on the empirical distribution of the relative losses over 200 (non parametric) bootstrap replications
using recursive estimation with first estimation sample 1959-1979, forecast sample 1980-2004
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Table 5: Evaluating the economic significance of the forecast gains

70-83 84-96

Col. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [16] [17] [14] [15]

MODEL h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=4 h=8 h=12 h=12 h=12 h=6 h=12
ARFC11 - - - - - - - - 1.00 1.00 1.00 1.00 - - - -
ARFC04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - - 3.92 1.30 1.74 2.36
ARFT04 0.75 0.78 0.58 0.38 1.00 0.95 0.93 0.36 0.86 0.80 0.67 0.54 1.63 2.04 1.48 1.38
ARFC14 0.78 0.83 0.66 0.38 1.02 0.97 0.94 0.45 0.91 0.99 1.01 1.00 2.54 0.97 1.48 1.56
ARFT14 0.80 1.01 1.02 0.95 1.06 1.04 1.08 1.08 0.90 1.10 1.36 1.91 1.56 1.54 1.26 1.19
ARFCP4 0.78 0.83 0.66 0.38 1.02 0.97 0.94 0.45 0.91 0.99 1.01 1.00 2.54 0.97 1.48 1.56
ARFTP4 0.80 1.01 1.02 0.95 1.06 1.04 1.08 1.08 0.90 1.10 1.36 1.91 2.54 0.97 1.48 1.56
ARFC0a 0.83 1.03 1.23 1.00 1.08 1.02 1.07 0.96 0.91 1.07 1.39 2.09 4.70 0.97 1.52 2.68
ARFT0a 0.75 0.78 0.60 0.40 1.03 0.92 0.92 0.40 0.86 0.81 0.68 0.53 1.58 1.54 1.25 1.23
ARFC1a 0.77 0.82 0.65 0.37 1.08 1.00 1.03 0.46 0.91 1.00 1.03 1.00 3.45 0.84 1.68 2.00
ARFT1a 0.81 0.99 1.21 0.90 1.11 1.11 1.20 1.00 0.91 1.12 1.33 1.97 1.55 1.27 1.17 1.12
ARFCPa 0.77 0.82 0.65 0.37 1.08 1.00 1.03 0.46 0.91 1.00 1.03 1.00 3.45 0.84 1.68 2.00
ARFTPa 0.81 0.99 1.21 0.90 1.11 1.11 1.20 1.00 0.91 1.12 1.33 1.97 3.45 0.84 1.68 2.00
ARFC0b 0.89 1.03 0.97 1.00 0.98 0.96 1.05 1.00 1.00 1.08 1.39 1.88 4.83 0.97 1.52 2.75
ARFT0b 0.83 0.79 0.60 0.43 0.97 0.92 0.92 0.41 0.91 0.81 0.73 0.62 1.62 1.54 1.25 1.25
ARFC1b 0.83 0.83 0.65 0.37 0.99 0.92 0.90 0.45 1.00 1.00 1.03 1.00 3.04 0.84 1.68 1.79
ARFT1b 0.87 0.99 0.91 0.90 1.04 0.99 1.13 1.09 1.00 1.09 1.33 1.78 1.61 1.30 1.19 1.15
ARFCPb 0.83 0.83 0.65 0.37 0.99 0.92 0.90 0.45 1.00 1.00 1.03 1.00 3.04 0.84 1.68 1.79
ARFTPb 0.87 0.99 0.91 0.90 1.04 0.99 1.13 1.09 1.00 1.09 1.33 1.78 3.04 0.84 1.68 1.79
NOCHANGE 3.07 5.00 4.76 5.08 1.23 1.34 1.30 1.80 2.71 4.31 6.54 10.95 11.42 6.35 9.32 7.47
ARTVFC03 0.83 0.90 0.81 0.74 1.06 1.14 1.29 1.14 0.93 1.21 1.60 2.06 4.71 0.71 1.98 2.62
ARTVFC13 0.81 0.84 0.71 0.52 1.05 1.05 1.04 0.64 0.92 1.07 1.19 1.28 3.24 0.75 1.87 1.88
ARTVFCP3 0.81 0.84 0.71 0.52 1.05 1.05 1.04 0.64 0.92 1.07 1.19 1.28 3.24 0.75 1.87 1.88
ARTVFC0a 0.91 1.03 0.93 0.89 1.22 1.39 1.57 1.59 0.98 1.40 1.75 2.54 4.47 0.92 2.05 2.55
ARTVFC1a 0.83 1.11 0.99 0.53 1.09 1.08 0.98 0.55 0.93 0.97 0.99 0.96 3.34 0.92 2.90 1.97
ARTVFCPa 0.83 1.11 0.99 0.53 1.09 1.08 0.98 0.55 0.93 0.97 0.99 0.96 3.34 0.92 2.90 1.97
ARTVFC0b 0.91 1.03 0.88 0.85 1.22 1.39 1.56 1.59 0.98 1.32 1.72 2.62 4.57 0.92 2.12 2.60
ARTVFC1b 0.86 1.00 0.89 0.53 1.09 1.08 0.98 0.55 0.96 0.93 0.99 0.96 3.13 0.92 2.90 1.86
ARTVFCPb 0.86 1.00 0.89 0.53 1.09 1.08 0.98 0.55 0.96 0.93 0.99 0.96 3.13 0.92 2.90 1.86
LS0103 0.88 1.19 0.76 0.84 1.90 1.86 1.42 2.72 1.13 1.07 1.48 1.63 5.76 1.61 3.44 3.37
LS1103 0.78 0.84 0.69 0.43 1.08 1.08 0.93 0.39 0.97 1.09 1.23 1.01 2.94 1.12 2.01 1.81
LSP103 0.78 0.84 0.69 0.43 1.08 1.08 0.93 0.39 0.97 1.09 1.23 1.01 2.94 1.12 2.01 1.81
LS0063 0.83 1.26 1.28 1.14 0.97 0.97 1.18 1.19 0.90 1.15 1.15 2.43 2.68 0.88 1.71 1.63
LS1063 0.80 0.90 0.69 0.37 1.02 1.14 0.95 0.48 0.86 1.01 1.05 1.04 1.32 0.85 1.93 0.90
LSP063 0.80 0.90 0.69 0.37 1.02 1.14 0.95 0.48 0.86 1.01 1.05 1.04 1.32 0.85 1.93 0.90
LSF0a 1.47 1.26 2.03 2.16 1.42 2.41 3.03 1.13 0.95 1.70 2.71 3.81 7.37 2.62 6.87 4.46
LSF1a 0.98 1.01 0.76 0.75 1.40 1.45 1.38 0.75 1.08 0.92 1.25 1.00 2.57 0.97 3.51 1.57
LSFPa 0.98 1.01 0.76 0.75 1.40 1.45 1.38 0.75 1.08 0.92 1.25 1.00 2.57 0.97 3.51 1.57
LSF0b 0.87 1.19 1.73 2.28 1.39 2.00 3.15 1.13 1.01 1.61 2.71 3.37 5.86 2.18 6.53 3.57
LSF1b 0.98 0.99 0.67 0.75 1.28 1.11 1.57 0.35 1.08 0.92 1.17 0.98 2.34 0.84 3.58 1.43
LSFPb 0.98 0.99 0.67 0.75 1.28 1.11 1.57 0.35 1.08 0.92 1.17 0.98 2.34 0.84 3.58 1.43
AN0203 0.93 1.48 2.39 1.85 1.15 1.68 1.83 2.75 1.15 1.98 4.53 1.47 7.91 5.22 6.54 5.41
AN1203 1.07 1.48 1.04 0.49 1.49 1.36 1.36 0.44 1.58 1.39 1.21 1.07 2.75 1.14 2.65 1.72
ANP203 1.07 1.48 1.04 0.49 1.49 1.36 1.36 0.44 1.58 1.39 1.21 1.07 2.75 1.14 2.65 1.72
AN0213 1.28 2.73 4.18 8.52 1.61 2.58 1.90 2.53 1.43 5.28 3.26 9.71 13.12 3.96 6.89 7.76
AN1213 1.43 1.90 0.78 0.52 1.83 1.81 1.23 1.04 3.03 1.44 1.26 1.22 3.04 1.49 2.57 1.95
ANP213 1.43 1.90 0.78 0.52 1.83 1.81 1.23 1.04 3.03 1.44 1.26 1.22 3.04 1.49 2.57 1.95
AN0223 0.93 1.24 2.24 0.65 1.77 1.52 1.56 1.09 0.95 1.47 1.58 5.60 11.42 3.56 5.54 6.77
AN1223 1.75 1.61 1.15 0.43 1.16 0.96 1.12 0.54 1.38 1.38 1.27 1.35 2.41 1.18 1.98 1.56
ANP223 1.75 1.61 1.15 0.43 1.16 0.96 1.12 0.54 1.38 1.38 1.27 1.35 2.41 1.18 1.98 1.56
ANF0a 0.80 1.30 3.28 1.01 1.95 2.09 1.83 2.43 0.95 2.04 6.71 3.48 12.92 3.65 7.40 7.59
ANF1a 1.76 2.42 2.23 0.69 1.70 1.32 1.02 0.73 1.73 1.38 1.06 1.99 3.25 1.19 2.98 1.99
ANFPa 1.76 2.42 2.23 0.69 1.70 1.32 1.02 0.73 1.73 1.38 1.06 1.99 3.25 1.19 2.98 1.99
ANF0b 0.92 1.11 1.31 0.99 1.26 2.18 1.73 2.17 1.14 1.21 3.54 3.90 12.92 3.08 7.73 7.46
ANF1b 0.92 1.59 1.71 0.43 1.26 1.08 1.39 0.83 1.00 1.19 1.09 1.02 2.80 1.38 3.10 1.79
ANFPb 0.92 1.59 1.71 0.43 1.26 1.08 1.39 0.83 1.00 1.19 1.09 1.02 2.80 1.38 3.10 1.79

2.71 44.83 133.55 95.84 17.03 6.19 24.67 470.10 3.04 24.38 60.56 83.10 22.57 2.55 1.74 10.40
* 100.000

Notes:
See Table 1 for the definition of the models. Relative losses wrt ARFC04 for A, to or ARFC11 for B, to Stock and Watson's benchmark for C and D.
Different estimation and forecast samples for comparison with:
A: Stock and Watson (2003) B: Ang, Piazzesi, Wei (2004)
C: Stock and Watson (1999a) D: Stock and Watson (2002)

Benchmark Loss

A - Growth
71-8485-99

B
 - 

Ti
m

e 
Va

ry
in

g 
an

d 
N

on
lin

ea
r

A
 - 

Li
ne

ar

B - Growth C - Inflation D - Inflation
70-9890-01



Table 6: Real Time Analysis 

h=1 h=2 h=4 h=1 h=3 h=6 h=12

Col. [1] [2] [3] [4] [5] [6] [7] [8]

ARFC04 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ARFT04 0.77 0.64 0.45 1.00 1.23 1.72 2.95
ARFC14 0.87 0.74 0.54 1.03 1.18 1.41 1.89
ARFT14 0.89 0.81 0.72 1.00 0.99 1.01 1.10
ARFCP4 0.87 0.74 0.54 1.03 1.18 1.41 1.89
ARFTP4 0.87 0.74 0.54 1.03 1.18 1.41 1.89
ARFC0a 0.99 0.96 1.00 1.03 1.07 1.01 1.00
ARFT0a 0.82 0.65 0.47 1.03 1.32 1.73 2.95
ARFC1a 0.86 0.73 0.53 1.06 1.30 1.52 1.99
ARFT1a 0.92 0.86 0.74 1.04 1.16 1.10 1.10
ARFCPa 0.86 0.73 0.53 1.06 1.30 1.52 1.99
ARFTPa 0.86 0.73 0.53 1.06 1.30 1.52 1.99
ARFC0b 1.09 0.96 1.02 1.08 1.07 0.97 1.01
ARFT0b 0.85 0.68 0.47 1.09 1.34 1.81 2.92
ARFC1b 0.90 0.72 0.51 1.05 1.24 1.68 2.17
ARFT1b 0.94 0.82 0.71 1.10 1.09 1.11 1.14
ARFCPb 0.90 0.72 0.51 1.05 1.24 1.68 2.17
ARFTPb 0.90 0.72 0.51 1.05 1.24 1.68 2.17
NOCHANGE 3.20 4.06 4.08 1.92 4.08 6.45 9.89
ARTVFC03 1.14 1.30 1.45 0.99 1.06 1.28 1.34
ARTVFC13 1.04 0.96 0.77 0.99 1.16 1.42 1.84
ARTVFCP3 1.04 0.96 0.77 0.99 1.16 1.42 1.84
ARTVFC0a 1.31 1.50 1.57 0.93 1.08 1.33 1.44
ARTVFC1a 1.09 1.14 0.84 1.04 1.33 1.49 1.82
ARTVFCPa 1.09 1.14 0.84 1.04 1.33 1.49 1.82
ARTVFC0b 1.31 1.50 1.57 0.93 1.07 1.32 1.43
ARTVFC1b 1.09 1.14 0.84 1.04 1.33 1.48 1.74
ARTVFCPb 1.09 1.14 0.84 1.04 1.33 1.48 1.74
LS0103 1.16 1.84 3.91 1.15 1.20 1.54 1.87
LS1103 0.90 0.94 0.63 1.01 1.38 1.79 1.96
LSP103 0.90 0.94 0.63 1.01 1.38 1.79 1.96
LS0063 1.99 1.28 1.54 1.20 1.72 1.87 2.00
LS1063 1.15 1.01 0.80 1.05 1.30 1.65 2.43
LSP063 1.15 1.01 0.80 1.05 1.30 1.65 2.43
LSF0a 2.14 2.96 2.92 1.04 1.17 1.52 2.02
LSF1a 1.15 1.18 0.65 0.98 1.07 1.63 1.48
LSFPa 1.15 1.18 0.65 0.98 1.07 1.63 1.48
LSF0b 1.30 2.35 2.34 1.08 1.22 1.50 1.90
LSF1b 0.95 0.82 0.61 1.05 1.17 1.53 1.41
LSFPb 0.95 0.82 0.61 1.05 1.17 1.53 1.41
AN0203 1.59 2.36 3.21 1.17 1.82 2.96 6.15
AN1203 1.35 1.23 0.66 1.47 1.86 2.08 2.31
ANP203 1.35 1.23 0.66 1.47 1.86 2.08 2.31
AN0213 1.99 3.26 4.49 1.91 3.05 3.08 7.03
AN1213 1.53 1.77 1.44 1.82 1.74 2.43 2.93
ANP213 1.53 1.77 1.44 1.82 1.74 2.43 2.93
AN0223 1.34 1.98 3.32 1.53 1.47 3.66 6.55
AN1223 1.57 1.40 1.23 1.08 1.60 1.81 2.76
ANP223 1.57 1.40 1.23 1.08 1.60 1.81 2.76
ANF0a 1.97 2.50 3.77 1.29 1.65 3.22 6.15
ANF1a 2.47 2.27 1.28 1.54 1.24 2.02 2.57
ANFPa 2.47 2.27 1.28 1.54 1.24 2.02 2.57
ANF0b 1.38 1.78 3.40 1.28 1.60 3.07 5.93
ANF1b 1.75 1.63 0.66 1.10 1.46 2.29 2.79
ANFPb 1.75 1.63 0.66 1.10 1.46 2.29 2.79

Benchmark Loss 2.49 7.11 26.33 0.47 1.18 2.66 6.39
*100000

Notes:
See Table 1 for the definition of the models. Relative losses wrt ARFC04
Rolling estimation with 15 year window. Forecast sample is 1994-2004.
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